
DEVELOPMENT OF RICH INTERNET
APPLICATION FOR OFFICE MANAGEMENT

SYSTEM

A Dissertation

Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
EBUSINESS, SP06

in the

FACULTY OF SCIENCE
The UNIVERSITY OF READING

by

Omer Dawelbeit, BSc (Hons)
sip05oid

2nd June 2008

Supervisor Ms. Eve-Marie Larsen

Acknowledgement

I would like to thank my supervisor Eve Marie for all her assistance during the
project. Also my special thanks go to Nia Alexandrov for her support over the past
two years made achieving this master degree possible. I would like to also thank
Nellie Round for her help.

I am also grateful to my parents Ibrahim and Amna and their continuous support
over the years. This support has given me the energy to carryon and complete
this dissertation. Special thanks also go to my brother and sisters.

I would like to thank my wife Amna for her continuous support, patience and
constructive feedback in regards to this dissertation. The smiles of my two
daughters Laila and Sarah also made the long hours spent on this project bliss.

My appreciation goes to John Rossall my work colleague in Thoughtbreak for
kindly offering technical advice and sharing knowledge.

Special thanks also go to Paul Alexander for proof reading this report and
providing feedback on the application.

Many thanks to Amna Ahmed, Omer Abu-Bakar, Haleem Abu-Gusiessa and
Mohammed Al Haj for their contributions to the survey and for their feedback on
the application.

2

Abstract

This project is concerned with the design and implementation of a cost effective
Rich Internet Application for an office management system that can be used to
mange the staff in a small business. This dissertation outlines the shortcomings
of using traditional Web design methodologies to design functionality-oriented
applications. To overcome these shortcomings the project has devised a
comprehensive design and implementation methodology to implement a new
generation of Web applications called Rich Internet Applications. This design
methodology is largely based on two pillars, one is the traditional and established
software design principles outlined in the literature such as Bennett et al. [4],
Stone. et al [34] and Shneiderman [32] and the other is the new concept of Web
2.0 [24].

The project uses the Unified Software Development Process, relational database
theory and the user interface principles to design the application, and then
devises a methodology to implement a dynamic, rich user interface. The project
implements the application using the Java programming language and other Web
technologies and Open Source frameworks such as JavaScript, HTML, CSS,
Hibernate, Spring and Struts 2. This report provides the design, implementation
and evaluation of the application and clearly demonstrates that the developed
Rich Internet Application has delivered better usability, interactivity and
performance compared to traditional Web applications.

3

Table of Contents

 Acknowledgement .. 2
 Abstract ... 3
 Table of Contents .. 4
 List of Tables ... 8
 List of Figures ... 9
 Abbreviations ... 12
1 Introduction ... 13

1.1 Motivations behind the project ... 13
1.2 Project Aim ... 13
1.3 Project Objectives .. 14
1.4 Organisation of this Dissertation .. 14

2 Technology Background ... 15
2.1 Why Web applications? .. 15
2.2 The Concepts of Web 2.0 ... 16

2.2.1 Rich Internet Applications .. 18
2.3 The Web as an OO user interface .. 19
2.4 The use of a dynamic rich user interface ... 21

2.4.1 The use of rich visual widgets: ... 21
2.4.2 Breaking the page model using AJAX ... 23

2.5 The use of lightweight frameworks and established modelling techniques 25
2.6 Usability Requirements .. 26

2.6.1 User Interface (UI) Design Principles .. 26
2.6.2 Web pages design principles ... 27
2.6.3 Design rules for the OfficeMA .. 28

2.7 Accessibility .. 29
2.8 Summary .. 30

3 Project Requirements ... 32
3.1 HR Requirements of Small Businesses ... 32

3.1.1 Obstacles facing small businesses .. 33
3.1.2 What is needed and why? ... 33
3.1.3 Alternative applications .. 34

3.2 Software used for the Project ... 36
3.2.1 Java Web Components ... 36

4 Design Methodology ... 37
4.1 Project Lifecycle ... 37
4.2 The Software Development Process .. 38

4.2.1 Requirement Capture and Modelling ... 39
4.2.2 Requirement Analysis .. 40
4.2.3 Class design (Detailed design) .. 42
4.2.4 User Interface Design .. 42
4.2.5 Database Design ... 43
4.2.6 Construction, testing and implementation .. 45

5 Preliminary System Design ... 46

4

5.1 Requirements Gathering .. 46
5.2 Initial System Architecture .. 46
5.3 Requirement Capture and Modelling ... 47

5.3.1 Prototyping the User Interface ... 47
5.3.2 Staff Management Requirements .. 48
5.3.3 Expenses Management Requirements .. 50
5.3.4 Authentication and Authorisation Requirements 53
5.3.5 System Settings Management ... 54
5.3.6 Time Booking Requirements ... 56
5.3.7 Holiday Management Requirements ... 58
5.3.8 Task Management Requirements .. 60

5.4 Requirement Analysis .. 61
6 Implementation Strategy ... 62

6.1 System Architecture ... 62
6.2 Database layer ... 63

6.2.1 Choosing a DMBS ... 63
6.2.2 Database Implementation .. 63

6.3 Business Logic Layer ... 64
6.3.1 POJO Architectural Pattern ... 64
6.3.2 Spring Framework and Dependency Injection 66
6.3.3 Domain model classes .. 67
6.3.4 Object to relational mapping framework .. 67
6.3.5 Coding practices .. 72
6.3.6 Unit testing the domain model classes .. 72

6.4 Presentation Layer ... 74
6.4.1 Presentation Layer logic and data formatters 75
6.4.2 Graphical user interface .. 77

6.5 Overall System ... 82
7 Detailed Software Design .. 83

7.1 Detailed Class Design and Implementation ... 84
7.1.1 Design and architectural patterns .. 84
7.1.2 Enumerated types ... 85
7.1.3 Dependency Injection using Spring ... 86
7.1.4 The use of Exceptions ... 87
7.1.5 Generics and Parameterized Classes ... 87

7.2 Application Packages ... 88
7.2.1 Company package: .. 89
7.2.2 Expenses package: ... 91
7.2.3 Holiday package: ... 95
7.2.4 Staff package: .. 98
7.2.5 Task package: .. 105
7.2.6 Testing the domain model .. 107

7.3 User Interface Design and Implementation .. 108
7.3.1 Application action classes ... 109
7.3.2 User Interface Design .. 112
7.3.3 User interface controller ... 116

5

7.3.4 User interface modelling .. 117
7.4 Database Design and Implementation ... 126

7.4.1 Establishing requirements ... 126
7.4.2 Data Analysis ... 126
7.4.3 Entity Relationship Model .. 128
7.4.4 Normalisation ... 131
7.4.5 Relational Database Model ... 134
7.4.6 Physical Database Model .. 134

7.5 Caching, Pooling and Transactions Support .. 137
7.5.1 Caching ... 137
7.5.2 Connection Pooling ... 137
7.5.3 Transactions .. 138

7.6 Security .. 139
7.6.1 Insecure Communications ... 140
7.6.2 Session Hijacking .. 141
7.6.3 JavaScript Hijacking .. 141
7.6.4 JavaScript Tampering .. 141
7.6.5 SQL Injection, Remote file inclusion and Cross-site scripting 142

7.7 Deployment .. 143
7.8 System Testing ... 144

8 Evaluation ... 145
8.1 Satisfaction of business requirements ... 145
8.2 Accessibility .. 145
8.3 Usability ... 146

8.3.1 Visibility, Affordance and Consistency ... 146
8.3.2 Closure, Tolerance and Feedback ... 147
8.3.3 Performance and Data Refresh ... 147

8.4 Evaluation Summary .. 147
9 Conclusions .. 148

9.1 Project Achievements ... 148
9.2 Project Issues ... 149
9.3 Contributions of this Dissertation ... 149

9.3.1 Problems with adapting functional-oriented UI as content-oriented Web
UI .. 149
9.3.2 Utilising the Web as a functional user interface 150

9.4 Suggestions for Future Work ... 152
9.4.1 Usability and Accessibility of RIA ... 153
9.4.2 Performance of RIA ... 153
9.4.3 Enhancements to the Office Management Application 153

10 References ... 154
10.1 Books and Articles .. 154
10.2 Web references ... 157

11 Appendices ... 161
11.1 Appendix A – Office Management Application’s Modules Survey 162
11.2 Appendix B – Documents Sampling ... 163

11.2.1 Sample holiday control spreadsheet .. 163

6

11.3 Appendix C – Use Case Models ... 164
11.3.1 Add Staff Use Case .. 164
11.3.2 Find Staff Use Case ... 169
11.3.3 View Personal Details / Edit Personal Details 172
11.3.4 View brief / complete staff details .. 175
11.3.5 Edit staff details ... 177
11.3.6 Find Expenses ... 180
11.3.7 View, approve, reject and pay Expenses ... 185
11.3.8 Edit Expenses Use Case ... 188
11.3.9 Add New Expenses Use Case ... 191
11.3.10 Login use case ... 196
11.3.11 View/Update system settings ... 198
11.3.12 Update my settings .. 202
11.3.13 View/Add Timesheet .. 204
11.3.14 View timesheet summary ... 207
11.3.15 View Holiday Details use case ... 210
11.3.16 View Holiday Calendar use case ... 213
11.3.17 View / Update Tasks use case ... 215

11.4 Appendix D – Requirement Analysis Models .. 217
11.4.1 Staff management communication diagrams 217
11.4.2 Staff management analysis class diagram 219
11.4.3 Authentication and Authorisation communication diagram 219
11.4.4 Authentication and Authorisation sequence diagram 220
11.4.5 Authentication and Authorisation analysis class diagram 220
11.4.6 Expenses management communication diagrams 221
11.4.7 Expenses management analysis class diagram 224
11.4.8 Expenses state diagram .. 225
11.4.9 Holiday management communication diagrams 226
11.4.10 Holiday management analysis class diagram 228

11.5 Appendix E – Relational Database Model .. 229
11.6 Appendix F – Physical database schema ... 236
11.7 Appendix G – Sample ORM SQL queries ... 247
11.8 Appendix H – Software CD-ROM Contents .. 253
11.9 Appendix I - Software used for the project .. 254
11.10 Appendix J – PostgreSQL database utilities ... 255
11.11 Appendix K – Jude UML CASE tool .. 256
11.12 Appendix L – Google code project .. 257
11.13 Appendix N – Debugging JavaScript and Browser tools 259

11.13.1 Firefox Firebug ... 259
11.13.2 Firefox Web Developer Toolbar ... 259
11.13.3 Microsoft Script Debugger for IE .. 260
11.13.4 Microsoft IE Developer Toolbar .. 260

11.14 Appendix O - Project Schedule ... 261
11.14.1 Project Gantt Chart .. 262

7

List of Tables

Table 1 – A comparison of sample widgets used in desktop and Rich Internet
applications..22
Table 2 – Similarities between desktop applications and Web capabilities..........30
Table 3 – Alternative software applications and their issues................................35
Table 4 – Requirements summary for staff management....................................48
Table 5 – Use cases summary for staff management..49
Table 6 – Requirements summary for expenses management............................50
Table 7 – Use cases summary for expenses management.................................52
Table 8 – Requirements summary for authentication and authorisation..............53
Table 9 – Use cases summary for authentication and authorisation....................54
Table 10 – Requirements summary for system settings management................54
Table 11 – Use cases summary for system settings..56
Table 12 – Requirements summary for time booking...56
Table 13 – Use cases summary for time booking..57
Table 14 – Requirements summary for holiday management..............................58
Table 15 – Use cases summary for holiday management...................................59
Table 16 – Requirements summary for task management..................................60
Table 17 – Use cases summary for task management..61
Table 18 – Some of the features of PostgreSQL vs. MySQL [20]........................63
Table 19 – Crow’s feet notation used in the ER- modelling.................................64
Table 20 – ER-Model and Relational Mode to JPA and Hibernate mappings......70
Table 21 – Data types for the various models..135
Table 22 – Project schedule and deadlines...261

8

List of Figures

Figure 1. Gartner Hype Cycle for 2006 technologies [27]....................................17
Figure 2. Comparison between Standalone and Rich Internet Applications........18
Figure 3.. The duality of the Web [19]..19
Figure 4. Traditional server based MVC Web applications [21]...........................24
Figure 5. RIA MVC Web applications [21]..24
Figure 6. Traditional waterfall lifecycle model..37
Figure 7. Activities that lead to software deployment, adapted from Grand [21]..39
Figure 8. Sample Model of Database Development [23].....................................44
Figure 9. Initial package architecture for OfficeMA..47
Figure 10. Use cases for staff management..49
Figure 11. Expenses management use cases...51
Figure 12. Login use case diagram...53
Figure 13. System settings management use cases diagram.............................55
Figure 14. Time booking use cases diagram...57
Figure 15. Holiday management use cases..59
Figure 16. Task management use cases...60
Figure 17. Layered architecture for a typical Web application.............................62
Figure 18. Part of detailed class model showing entities, a repository and a
service...65
Figure 19. Business logic layer showing domain model and ORM layer.............68
Figure 20. JUnit tests executed from within the Eclipse IDE...............................73
Figure 21. Office Management Application Presentation layer............................75
Figure 22. Using JavaScript eval function on a JSON string to create a JavaScript
Object..76
Figure 23. View Staff Details dialogue widget..79
Figure 24. JavaScript classes declarations in Dojo...80
Figure 25. Boundary class diagram for ViewStaff widget....................................80
Figure 26. Sequence diagram for the ViewStaff widget.......................................81
Figure 27. OfficeMA candidate technologies. Adapted from Richardson [30]......82
Figure 28. Package structure for OfficeMA detailed classes...............................84
Figure 29. Data Access Object Class Diagram [30]...85
Figure 30. Spring beans schematic for OfficeMA classes....................................86
Figure 31. Generic repository super class and interface for CRUD operation.....88
Figure 32. WorkStream, Project and repository classes......................................90
Figure 33. Grade and GradeRepository classes...90
Figure 34. Spring beans schematic for ExpensesManagementServiceImpl........92
Figure 35. Methods defined by the ExpensesManagementServiceImpl..............92
Figure 36. Expenses classes and dependencies (Generic repository classes
omitted for clarity)..94
Figure 37. Spring beans schematic for HolidaysManagementServiceImpl..........95
Figure 38. Methods defined by the HolidaysManagementServiceImpl................96
Figure 39. Holidays classes and dependencies (Generic repository classes
omitted for clarity)..97

9

Figure 40. Role classes and dependencies (Generic repository classes omitted
for clarity)...99
Figure 41. Spring beans schematic for StaffManagementServiceImpl..............100
Figure 42. Methods defined by the StaffManagementServiceImpl....................100
Figure 43. Sequence diagram for the createStaffMember.................................101
Figure 44. Sequence diagram for the authenticate..102
Figure 45. Staff classes and dependencies (Generic repository classes omitted
for clarity)...104
Figure 46. Spring beans schematic for TaskManagementServiceImpl..............106
Figure 47. Methods defined by the TaskManagementServiceImpl....................106
Figure 48. Task classes and dependencies...107
Figure 49. Struts 2 request flow [44]..108
Figure 50. Package structure for presentation layer..109
Figure 51. Office Management Application desktop...113
Figure 52. OfficeMA menus and toolbar...113
Figure 53. An animated image to indicate the application is loading data..........114
Figure 54. Message dialogues in the OfficeMA...114
Figure 55. Add staff window...115
Figure 56. Find staff window..116
Figure 57. Class diagram for the client side JavaScript controller.....................117
Figure 58. Boundary class diagram for staff management VSOs......................118
Figure 59. Edit staff details sequence diagram..119
Figure 60. View staff details sequence diagram..119
Figure 61. Add staff details sequence diagram..120
Figure 62. Find staff sequence diagram..120
Figure 63. Boundary class diagram for expenses management VSOs.............122
Figure 64. Add new expenses item sequence diagram.....................................123
Figure 65. Boundary class diagram for task management VSOs......................124
Figure 66. View Tasks sequence diagram...125
Figure 67. Delete/Update Task sequence diagram..125
Figure 68. The Office Management Application preliminary E-R diagram.........129
Figure 69. EHCache configurations...137
Figure 70. DBCP connection pooling configurations...138
Figure 71. Securing OfficeMA application with Apache Web server..................140
Figure 72. Deployment diagram for OfficeMA..143
Figure 73. Add staff use case diagram..164
Figure 74. Find staff use case diagram...169
Figure 75. View/Edit personal details use case diagram...................................172
Figure 76. View brief/complete staff details use case diagram..........................175
Figure 77. Edit staff use case diagram..177
Figure 78. Find expense use case diagram...180
Figure 79. View, approve, reject and pay expenses use Case diagram............185
Figure 80. Add new expenses use case diagram..191
Figure 81. Add staff communication diagram...217
Figure 82. Edit Staff communication diagram..218
Figure 83. View Staff Details...218

10

Figure 84. Staff management analysis class diagram.......................................219
Figure 85. Login communication diagram..219
Figure 86. Authentication and Authorisation sequence diagram........................220
Figure 87. Authentication and Authorisation analysis class diagram.................221
Figure 88. Add/Edit expenses communication diagram.....................................221
Figure 89. Find Expenses communication diagram...222
Figure 90. View Expenses communication diagram..223
Figure 91. Expenses management analysis class diagrams.............................224
Figure 92. Expenses management analysis class diagrams.............................225
Figure 93. Approve/Cancel holiday communication diagram.............................226
Figure 94. Request/Cancel holiday communication diagram.............................226
Figure 95. View holiday calendar communication diagram................................227
Figure 96. View Holiday details communication diagram..................................227
Figure 97. Holiday management analysis class diagram...................................228

11

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
BCNF Boyce-Codd Normal Form
CIO Chief Information Officer
CRC Collaboration – Responsibility Card
CRUD Creating, Retrieving, Updating and Deleting
CSS Cascaded Style Sheets
DAO Data Access Object
DBMS Database Management System
DDL Data Definition Language
DHTML Dynamic HTML
DI Dependency Injection
DML Data Manipulation Language
DOM Document Object Model
DTI Department of Trade & Industry
EJB Enterprise Java Beans
ER Entity-Relation
GUI Graphical User Interface
HR Human Resources
HTML Hypertext Markup Language
HTTP Hyper Text Transfer Protocol
IDE Integrated Development Environment
IIS Internet Information Services Server from Microsoft
IT Information Technology
J2EE Java 2 Enterprise Edition
JDBC Java Database Connectivity
JPA Java Persistence API
JSON JavaScript Object Notation
JSP JavaServer Pages from Sun Microsystems
JVM Java Virtual Machine
MDI Multiple Document Interface
MVC Model-View-Controller
OfficeMA Office Management Application
OO Object Oriented
ORM Object Relational Mapping
OS Operating System
OWASP Open Web Application Security Project
POJO Plain Old Java Object
RIA Rich Internet Applications
TLC Traditional Waterfall Lifecycle
UI User Interface
UML Unified Modeling Language
USDP Unified Software Development Process
VSO View Support Object
W3C World Wide Web Consortium
WUI Web User Interface
XML Extensible Markup Language

12

1 Introduction

1.1 Motivations behind the project

Statistics for 2006 published by the DTI (Department of Trade & Industry) [36]
shows that out of 4.5 million businesses in the UK, 99.3% were small firms with
fewer than 50 employees. To support the running of their day to day activities and
staff management most of these businesses rely on manual processes such as
paper forms or spreadsheets. This is due to the fact that these businesses
usually do not have the budget to hire IT consultants to develop bespoke
applications or the budget to buy out-of-the box software applications that bears
a high price tag on licensing.

Web applications can provide a solution and automate these day to day activities,
and combined with Web 2.0 features these Web applications can be easy to use,
flexible, interactive and cost effective. Such applications can enhance the
productivity and enable those businesses to have better control over their
operation, keep their mobile workers and customers closer.

The need for the work on this project has risen from the requirements of a small
business to be able to automate and manage day to day activities such as
expenses, holidays, time booking and electronically store employee data rather
than relying on paper and spreadsheets to manage these activities. Based on the
large number of small business today the project tried to design and implement a
Web application that at least satisfies a generic set of requirements of managing
the staff in a small office and making this application configurable where possible.

Most of the small businesses surveyed complained from the fact that these
manual processes are time consuming and welcomed the idea of a cost effective
Web application which is secure and has access roles so that the administrators
are in control and the normal staff roles are restricted.

1.2 Project Aim

The aim of this project is to design and implement a cost effective and
configurable Office Management Application as a Rich Internet Application that
incorporates at least the staff and expenses human resources areas with the
ability to extend the application in the future to cover the other areas such as
holidays and time booking.

13

1.3 Project Objectives

The objectives of this project are summarised as follows:

• Investigate the possibility of applying the USDP boundary classes
methodology used to design traditional desktop application in designing
and modelling Rich Internet Application user interface. And Devise a
methodology that can be used to design similar applications

• Gather and analyse the business requirements for the Office Management
Application using the USDP and provide the analysis and detailed design
UML models.

• Identify the data requirements for the application and use the relation
database design theory to provide the Entity-Relations, relational and
physical database models for the application.

• Implement using Java, test and evaluate the application using Open
Source technologies and provide the source code, the binaries and the
user documentations for the application.

1.4 Organisation of this Dissertation

Section (2) of this report provides a technology background on the
methodologies adopted for this project with the main focus on Web applications
and the concepts of Web 2.0.

Section (3) on the other hand summarises the project requirements in term of
business needs and motivations. This section also briefly evaluates the
alternative applications.

Section (4) summarises the design methodology used which is based on the
Unified Software Development Process, the user interface design principles and
the relation database theory. This section also outlines the deliverables expected
from each design step.

Sections (5, 6 and 7) outline the preliminary system design, the implementation
strategy and the detailed design respectively. UML diagrams are produced as
part of sections 5 and 7, whilst section 6 concentrates on devising the
implementation strategy and putting together a new methodology that can be
used to implement rich HTML user interfaces.

Sections (7 and 8) provide an evaluation of the application developed and
conclusion of the achievement advantages and disadvantages of the new
methodology.

14

2 Technology Background

The work on this project relied upon a number of unconnected concepts in
software design and advances in the Web technology. The project tried to link
and tie these together and fills the gaps by introducing new concepts and
terminology in order to devise a methodology that can be used to effectively
design and implement Web 2.0 applications. This methodology is based these
principles [24]:

• Applying the concepts of Web 2.0

• Treating the Web as an object oriented user interface, rather than a
hypertext medium.

• The use of lightweight dynamic user interfaces that are rich, interactive
and responsive, rather than using static Web pages.

• The use of lightweight frameworks and established modelling techniques.

This section provides an overview of the background material available in
regards to the four principles mentioned above and the conclusions made.
However, before considering these four principles the main drive behind adopting
Web applications as a software interface is considered below.

2.1 Why Web applications?

A strong argument was presented in most of the referenced literature for using
Web applications, for example Rajagopalan et al. [28] has summarised the
advantages of Web application as follows:

• Web as an effective medium for information delivery

• The ability to remote access the application

• Platform independent user agent

• Reduced development efforts and cost

• Centralised maintenance efforts and instant upgrade. Also interface
changes are centralised

Added to the advantages above is the fact that Web applications have been in
existence for quite some time now, which has lead to the development of many

15

frameworks and design architectures that can be reused when moving on to Web
2.0 technologies [24]. Having said this, traditional Web applications do have
some drawbacks such as performance for example, but this project tries to
overcome these classical problems by trying out the new Web 2.0 technologies
and has come to the conclusion that the advantages of using Web applications
outweigh the disadvantages.

The strength of Web application emerged from the ability to integrate a range of
backend systems including databases. Elmasri and Navathe [13] has provided a
model for providing access to databases on the World Wide Web, although it is
outdated in terms of technology, it still represents the same architecture currently
used by Web application. Databases on the Internet are now a very popular
option for all Web applications. Elmasri and Navathe [13] and Connolly and Begg
[8] also explain the relational database design and implementation in great detail.

2.2 The Concepts of Web 2.0

The Web started as a hypertext medium for publishing documents and traditional
Web design was all about information architecture and navigational design. As
Web technologies evolved, the Web became more interactive in the fact that
users could submit and query information dynamically rather than viewing static
pages. With the ability to process information, display a rich user interface and
interact with the server without the need to submit a whole page through the use
of AJAX, the next generation of the Web has emerged; referred to as Web 2.0.

Web 2.0 is being referred to as a platform for deploying software applications [9,
10] and this platform can be used to deploy rich and usable applications on the
Web. This approach for developing and deploying software applications has
many advantages such as cost reduction, flexibility and usability. However, the
problem is that there is much hype and jargon surrounding Web 2.0 technologies
with no clear methodology that can be followed to design and implement Web 2.0
applications. This hype is documented by Gartner Research in their Hype Cycle
diagram for 2006 [27] (Figure 1) that Web 2.0 technologies which were at the
“Peak of Inflated Expectations” should be in mainstream use in less than two
years. Two years on, it is now apparent that Web applications are moving
towards Web 2.0 technologies as demonstrated by many Web applications today,
such as Google Apps.

It is also evident that it is not just big software organisations that want to move
towards Web 2.0, but also other large organisations as well. A survey by
Forrester Research revealed that 70% of Fortune 2000 Chief Information Officers
(CIOs) want to standardize on deploying applications to a Web browser [66].
However, of those surveyed, more than half stated that the limits of HTML
prevented them from reaching this objective. But, now with the emergence of

16

new Web technologies such as AJAX [18] the road is paved for organisations to
deploy rich and usable applications on the Web. Hence the Leading Edge Forum
[12] has recommended that businesses should adopt Web 2.0 technologies and
“move towards using Web browsers and rich internet applications as the
standard interface to most applications”.

Figure 1. Gartner Hype Cycle for 2006 technologies [27].

From the argument presented above, it’s clear that the Web as a platform is now
ready for providing a front-end interface for most of the software applications.
Nowadays Web 2.0 technologies are regularly talked about and some also
believe it holds the answer to HTML limitations. However, a great deal of such
hype is over inflated expectations. In this project the author believes that Web 2.0
technologies can deliver usable and effective solutions nevertheless will need
careful design and implementation to leverage the best features of these
emerging technologies.

17

2.2.1 Rich Internet Applications

Rich Internet Applications (RIA) on the other hand are Web 2.0 applications that
enhance the user interface by incorporating some or all the features and
functionality of traditional desktop applications. The similarities between RIAs and
desktop applications are demonstrated by Figure 2 below. These similarities are
based on how the user interacts with the two user interfaces and how they
communicate with the application layer. Both applications still need to use a
database server; the desktop client is configured in client-server architecture and
accesses the database directly on the other hand the Web application uses the
application server for business logic and as a proxy to access the database
server. In both cases the user Interface logic and manipulations is performed on
the client machine.

Figure 2. Comparison between Standalone and Rich Internet Applications

18

2.3 The Web as an OO user interface

Many user interface design textbooks, such as: Stone. et al [34] and
Shneiderman [32] conceived the Web as a hyper-textual information space, but
with emergence of Web 2.0 technologies and the ability of the Web to be used as
a remote software interface the Web, it became clear that the Web now has a
dual nature [19]. This dual nature has caused confusion for practitioners as
Garrett [19] states:

“.. user experience practitioners have attempted to adapt their terminology to
cases beyond the scope of its original application”

Garrett [19] has tried to introduce new terminology to bridge the gap between the
two natures of the Web, and provides a good starting point for user interface
design of Web software applications. The author has drawn a clear distinction
between the use of the Web as a hypertext medium and using the Web as a user
interface.

Figure 3.. The duality of the Web [19].

19

In his model of the Element of User Experience (Figure 3), the author clearly
identifies the activities that need to be performed at each plane for the two
natures of the Web. This project has treated the Web as a software interface and
made the link between the steps highlighted by Garrett [19] and the design
methodologies that are used to develop the user interface for traditional desktop
applications. These methodologies are not widely used for Web applications,
although the process used is deeply rooted in the Unified Software Development
Process (USDP) and was used for a long time to model user interfaces for
desktop applications developed in languages such as Java and Visual Basic.

Having said that, the fact that the majority of available frameworks for RIA
development are Object Oriented such as JavaScript, VBScript, etc…, this
enables the Web user interface to be treated as an Object Oriented user
interface. At the minimum this can be achieved by the using JavaScript in
conjunction with the Document Object Model (DOM), which is the approach that
this project has followed. It was obvious that if the Web user interface is treated
as OO user interface the same methodology used to design the user interfaces
for desktop applications could be used to design the user interface for RIA.

The project has successfully utilised and used these design methodologies that
were largely based on the principles outlined by Bennett et al. [4] in regards to
designing user interfaces for traditional desktop applications. These can be
summarised as follow:

• Prototyping the user interface.

• Designing the boundary classes.

• Modelling the interaction involved in the interface using interaction or
communication diagrams.

• Modelling the control of the interface using state machines for complex UI
components.

20

2.4 The use of a dynamic rich user interface

The user interface used for the Office Management Application (OfficeMA) is
based on Dynamic HTML for contents, Cascaded Style Sheets for presentation
and JavaScript to tie both together. The interaction with the server is achieved
through the XMLHTTPRequest rather than using the traditional way of clicking on
links or submitting a whole page as a HTML Form. To achieve features similar to
desktop applications (thick clients) the user interface has adopted the following
principles:

• The use of rich visual widgets

• Breaking the page model using AJAX

2.4.1 The use of rich visual widgets:

Visual widgets are components that make up the User Interface and are used to
trap user’s actions and fire events based on those actions. Visual widgets fulfil a
number of interaction styles, which are summarised by Shneiderman [33] a
follows:

• Direct Manipulation and Virtual Environments

• Menu Selection, Form Filling, and Dialog Boxes

• Command and Natural Language

The OfficeMA adopts Menu Selection, Form filling and dialog boxes as the way
users will interact with the Application. The advantage of using these interactions
styles is the fact these styles come as a natural choice for computer users using
and familiar with graphical operating systems such as Windows, this ensures that
users can find the application easy to use and can accustom themselves fairly
quickly with the controls.

Widgets available to Web applications have evolved considerably and acquired
features and properties that outweigh their desktop counterpart. The working of
these Web widgets is similar to the one followed by desktop widgets. The user’s
actions are trapped and used to fire event, which in the case of desktop
applications will be based on the operating system events API. On the other hand
Web application widgets use the DOM event model to fire events based on the
user’s actions.

Table 1, below demonstrates the fact that with advances in the Web technologies
such as DHTML and Flash plug-in, Web widgets visually resemble the widgets
available for traditional desktop applications. The two toolkits considered below

21

are the Dojo toolkit [42], which is based on DHTML and the OpenLaszlo toolkit
which offers Flash as the first option and DHTML as second option. The desktop
applications widgets are generally made available by the Operating System (OS)
visual library API such as Windows API or through the Java Virtual Machine
(JVM) in the case of Java Swing applications.

Table 1 – A comparison of sample widgets used in desktop and Rich
Internet applications

Interaction
Style

Desktop Client – Based on
Windows API

Rich Internet Application

Dojo Toolkit Open Laszlo Toolkit
Menu Selection

Pull Down
Menus

Tabbed
Menus

Dialogue Boxes
Dialogue

boxes

Form Elements
Checkboxes

Dropdown
lists

22

2.4.2 Breaking the page model using AJAX

To be able to create a web user interface that is rich and dynamic, the traditional
page model will need to broken and the user will need to be able to submit data
to the server without submitting a whole page. The ability to do this will require
the use of some logic and control on the client side. This approach can better be
explained in terms of the Model-View-Controller (MVC) architectural pattern
largely used in Web applications. Figure 4, below shows a traditional MVC Web
application with the three components of the architecture based on the server
side.

The methodology used in this project is to transfer the view component to the
browser on the client machine (Figure 5). This component in itself then follows an
MVC pattern on the client side [21]. The author refers to such applications as a
third generation Web applications as explained below:

• First generation Web applications transferred HTML mark-up between the
client and Web server.

• Second generation Web applications transferred HTML mark-up, but also
made use of AJAX technologies to transfer data only.

• Third generation Web applications transferred the HTML mark-up to the
client once. The HTML source is built on the client side using JavaScript
then only AJAX is used to transfer data thereafter, completely breaking the
page model.

The third generation Web applications described above refer to RIA and more
specifically to AJAX applications. AJAX applications are a type of RIA that uses
XMLHTTPRequest browser object as their mechanism of calling the server and
breaking the traditional Web pages model. Crane et el. [10] have discussed AJAX
applications in detail and provided four principles that can be used to design such
applications as summarised below:

1. The browser hosts an application, not content
2. The server delivers data, not content
3. User interaction with the application can be fluid and continuous
4. This is real coding and requires discipline

Breaking the page model enables the use of a rich, interactive and dynamic user
interface that only relies on the server for data rather than contents. This provides
the ability to use a Multiple Document Interface (MDI) where the user can open
and tile multiple windows to aide multitasking and the ability of have different
views at one time. This is a feature that is not available in traditional HTML page,

23

where the user is tied to the page and needs to navigate away in order to view
information on different pages.

Figure 4. Traditional server based MVC Web applications [21].

Figure 5. RIA MVC Web applications [21].

24

http://future/wiki/index.php/Image:Ria1.jpg
http://future/wiki/index.php/Image:Ria2.jpg

2.5 The use of lightweight frameworks and established
modelling techniques

The heart of the OfficeMA is the domain model which is the realisation of the use
cases developed during the requirement analysis. The project followed the USDP
to design an object oriented domain model using UML. This model is use-case-
driven as it started off by realising the use cases; this makes it possible to trace
the requirements through to their final implementation and hence the ability to
test the final application using the use cases. Designing a domain model
simplifies the development process and makes it easy to use some of the
available Open Source lightweight frameworks to implement the application such
as Hibernate and Spring frameworks.

A properly designed domain model that encapsulates all the business logic
makes it possible for the user interface to directly represent and manipulate the
domain objects. As Pawson [25] has outlined in his Naked Objects design
pattern, that for a domain model designed to OO principles the user interface can
be automatically generated. This reinforces the fact that domain model is the
heart of object oriented software applications and the time well spent during the
analysis and design stages saves a great deal of time during implementation.

One of the key areas when designing object oriented applications is the ability to
persist the data from objects to database tables. Baur and King [2] present a
great deal of Object to Relational Mapping (ORM) concepts. Although the main
subject of the book is the popular Hibernate ORM framework, many of the
concepts and principles discussed can be applied to address common issues
with the conversion from objects to relational database tables.

The ability to effectively map Object into relational database tables also relies on
the fact that those Object are implemented as JavaBeans. JavaBeans are simple
Java Objects that encapsulate a number of instance variables and provide
getters and setters to update their values. These instance variables are usually
what is mapped to be persisted in the database. An architectural design pattern
that is widely used in the Java world is the POJOs (Plain Old Java Objects) [30],
which is an extension to the JavaBeans concept as it adds the concept of
separation of concerns in the fact that the POJO is only concerned about its own
business logic and does not know about how the data is persisted. Database
persistence in the POJOs pattern is done using the Data Access Object (DAO)
design pattern [30].

The object oriented analysis and design principles used in this project are largely
based on the concepts outlined by Bennett et al. [4]. The authors present a great
deal of methodology in the object oriented design using UML, which is largely
based on the USDP. The authors have discussed methods such as use case
realisation is discussed in detail. On the other hand the popular Domain Analysis

25

method also termed the Collaboration – Responsibility Card (CRC) is only briefly
mentioned. The domain analysis methodology is considered in more detail by
Arrington and Rayhan [1]. Although there are differences between the design
principles used by Bennett el al. [4] and Arrington and Rayhan [1], they
compliment each other in terms of producing an analysis and detailed class
diagrams. Arrington and Rayhan [1] also consider the implementation using the
Java technology which presented some foundations for the methodologies used
in this project.

2.6 Usability Requirements

In addition to the OfficeMA functional and technical requirements there were also
some usability requirements which directly related to the client requirements that
the application should be easy to use, responsive, interactive and user friendly.
These requirements are generic and not specific which makes it hard for the
designer to be able to translate and apply them to the final product, for this
reason a number of established user interface design principles were followed.
Some of the usability requirements such as performance and data refresh
automatically emerges from the fact that the application will be designed as a
RIA.

2.6.1 User Interface (UI) Design Principles

The OfficeMA user interface was designed by using and adapting the user
interface design principles outlined by Shneiderman and Plaisant [33] and Stone
et al. [34]. The user interface design field is a large area and considering that the
OfficeMA is a hybrid of web and desktop applications it was crucial to devise a
number of UI design principles and rules that can be used to design the user
interface.

Shneiderman and Plaisant [33] outlined the activities required to design and
implement an interactive user interface as follow:

• Determine users’ skill levels

• Identify the tasks

• Choose an interaction style

• Use of the eight golden rules of interface design.

26

The authors refer to these eight golden rules as follows:

1. Strive for consistency
2. Cater for universal usability
3. Offer informative feedback
4. Design dialogs to yield closure
5. Prevent errors
6. Permit easy reversal of actions
7. Support internal locus of control
8. Reduce short-term memory load.

Stone et al. [34] on the other hand specify a list of design principles and highlight
the fact that these principles are usually abstract and difficult to apply due to their
generality. To help make these principles easier to apply the authors indicate that
these principles can be translated into design rules, which are low level and
highly specific instructions to the designer. The authors then list a number of
design principles as follows:

• Visibility - It should be obvious what a control is used for

• Affordance – It should be obvious how a control is used

• Feedback – It should be obvious when a control has been used.

• Simplicity – Keeping the UI as simple as possible

• Structure – Organising the UI in a meaningful and useful way.

• Consistency – Uniformity in appearance, placement and behaviour with
the UI

• Tolerance – Preventing the users from making errors

2.6.2 Web pages design principles

Design principles for Web sites are based around the mnemonic HOME-RUN
[34] which stands for High quality contents, Often updated, Minimal download
time, Ease of use, Relevant to user’s needs, Unique to the online medium and
Net-centric corporate culture. These principles are more applicable to Web pages
than functionality-oriented Web applications that are usually restricted to a limited
group of people who use it on regular bases. Having said this, the fact that Web
applications utilise the Web as their platform some of the above design principles
will also need to be incorporated in Web application and in particular RIA.

27

Even though RIA are designed to behave like desktop application there is a
fundamental difference as shown in Figure 2, RIA rely on the server processing
for manipulating the data before sending it to the client side for display. This adds
an extra layer of processing and potentially a delay and data inconsistency
between the client and the server. Hence two of the design principles mentioned
above for Web sites will also need to be applied to Web applications in general
such as Often updated and Minimal download time principles. These address the
performance and data refresh issues in Web applications. Other principles such
as High quality contents, Unique to online medium and Net-centric corporate
culture are not applicable to the application designed in this project.

2.6.3 Design rules for the OfficeMA

For the purpose of the OfficeMA the following list of design rules have been short
listed. This list accommodates principles from both Shneiderman and Plaisant
[33] and Stone et al. [34]:

• Visibility and Affordance – The user interface will make it clear what
controls are used for and how they are used to adopting and using
standard control that most graphical operating system users are familiar
with.

• Feedback – The user interface will provide feedback to user’s actions in
the form of messages or animated image when data is being retrieved
from the server

• Simplicity and Structure – The user interface will be design to be simple
and to follow an MDI user interface with menu, tool and status bars. This
should be a familiar structure to normal desktop users. Complex and long
forms will be organised into tabs or trees using the tab or the tree widget.
The application will also avoid completely the use of horizontal scrolling by
offering the ability to maximize the windows on which the information is
displayed. Vertical scrolling in only used where necessary.

• Consistency – The user interface will be made consistent and the same
approach followed throughout the application.

• Tolerance – The user interface will be designed to prevent users from
making errors by performing interactive validation to user’s input which
indicates to the user immediately if they provided an invalid value for an
input. The user interface will degrade gracefully by providing error
messages and enabling the user to retry the action. The user interface will
enable the user to cancel any action they have started before completing
it.

• Closure – Dialogue boxes and windows will be designed in a way it is
clear to the user which dialogue is used for viewing or updating

28

information. It is also made clear when input is required by the user and
when the action has been completed successfully. Feedback should be
given to the user after the user submits their updates and current data in
the application should be refreshed accordingly.

• Performance and Data Refresh – Since the data is not managed locally
and application relies on the server to retrieve this data, performance is
added as one of the usability rules for the user interface. UI widgets
should be rendered in acceptable time frames. The same applies to data
retrieval from the server for this reason the server should use caching and
other mechanisms to ensure timely responses. The system will also
provide the ability for the user to refresh the data where possible or
provide automated data refresh updates whenever a window is opened.

2.7 Accessibility

Accessibility on the other hand is to ensure that the system developed is
accessible to people with disabilities. Some authors go a step further and define
accessibility as making the use of the system easier for all users. The W3C
provides a number of Web content accessibility guidelines and defines these
under the term universal access, which it describes as follows [34]:

“To make the Web accessible to all by promoting technologies that take into
account the vast differences in culture, language, education, ability, material
resources, access devices, and physical limitations of users on all content”

It is clear from the description above that the emphasis is to provide accessibility
for all rather than just for people with disabilities. For an application such the
OfficeMA the scope of the accessibility is even smaller than what is described by
the W3C above. This is mainly due to the fact that the application is limited in its
use to a number of staff who are computer literate and are constraint in their
resources to the ones identified by their employer such as which browser or
operating system they use. The need to consider some of the Web accessibility
rise from fact that the application is Web based and platform independent so that
the users can try it in any operating system with a browser, an issue that does not
affect desktop applications because these usually only run in specified OS.

Due to the time and budget constraints of this project accessibility was
considered in terms of the ability of the application to run in a specified
environment with minimum specifications. Employers can then ensure that these
perquisites are met before installing and using the application. If the OfficeMA
goes into mainstream use, then future work will be needed to consider the
accessibility to people with disabilities.

29

2.8 Summary

It is clear from the background material presented above that now there is more
demand on the Web to host many types of applications, ranging from the basic
Web application to the more sophisticated Rich Internet Applications. Basic Web
applications attempt to utilise the Web as an application medium by using Web
pages and trying to apply some of the Web design principles to these
applications. The problem is that these design principles are mainly for
information oriented Web sites where navigation and contents is at the heart of
the Web design principles. Consequently trying to push functionality-oriented
applications to fit this paradigm may raise many issues in some cases as some
application might not fit into the Web design paradigm.

The root cause of the above complications is due to the hypertext nature of the
Web which is oriented toward contents and information rather than functionality.
However, although the Web is intrinsically a hypertext medium, the foundations
are there for an Object-Oriented and functional oriented medium similar to the
one used for desktop applications. This section has demonstrated these
similarities as summarised in the Table 2 below.

Applications such as the OfficeMA designed as part of this project, are more
functionality oriented than information oriented. OfficeMA was designed to be
used by a group of people possibly on a daily bases to achieve the same tasks,
rather than to browser for contents or new information. This type of applications
is more suited to be a desktop application than a Web application. However, it is
desired to have the best of both worlds, the usability of desktop applications
combined with the many features of Web applications such the ability to run on
heterogeneous systems, centralised maintenance, remote access, etc… to
mention only a few.

Table 2 – Similarities between desktop applications and Web capabilities

Application Type Object Oriented Event-Model Widgets
Native desktop
applications

Yes Based on the OS
API

Based on OS GUI
widgets

Web applications
based on HTML

Yes, based on
JavaScript

Based on the
DOM event model

Based on HTML
widget and

customized widgets
Web applications
based on Plug-ins
such as Adobe
AIR and Microsoft
Silverlight

Yes, based on
Vendor’s

implementation,
but most use

JavaScript, C#,
Ruby, etc…

Based on
Vendor’s

implementation

Based on Vendor’s
implementation.

30

When designing and implementing an application such as the OfficeMA the
project used the traditional user interface design principles used for traditional
desktop application. By not doing so and trying to follow Web design principles
would mean throwing away many years of Graphical User Interface design
principles as stated by Nielsen [22]. The project has clearly demonstrated that
the application of these traditional design principle to the user interface and
treating it as a Graphical User Interface rather than a Web User Interface has
resulted in smooth, cost effective and usable design that enabled the
implementation of complex functionality.

31

3 Project Requirements

3.1 HR Requirements of Small Businesses

The majority of the requirements for this project have been identified for a small
business to manage their human resources efficiently and in a cost effective way.
A number of human resources areas have been identified in consultation with the
client as candidates for automation using the OfficeMA. These areas can be
summarised as follows:

• Staff – A module that can be used to create, update and view staff details

• Expenses – A module that can be used to create, submit, approve and
pay expenses.

• Tasks – A module that can be used to indicate to staff members that they
have an action to perform in the application.

• Holidays – A module that can be used to request and approve holidays

• Timesheet – A module that can be used to record the staff timesheet

• Settings – A module that can be used to change the system settings so
that the application is configurable and can fit the need of a number of
small businesses

• Pay – A module that can be used to calculate the staff pay and produce
payslips

The author of this dissertation also believed that based on the number of Small
businesses in the UK, such an application can satisfy the requirements and
benefit the majority of other small businesses. Subsequently the author has
conducted a survey as part of this project (Appendix A) to identify the methods
currently used by small businesses to manage the areas recognized above. The
survey also aimed at determining if these small businesses have made use of
any existing software, and if they have not, to identify the reasons why existing
software applications or the development of customised applications have not
been pursued.

The businesses surveyed that have 15 or less staff relied on paper or
spreadsheet based process for the areas identified above in except to the Pay
area which was either outsourced or done in house using Sage products [59].
Sage has established a strong market hold in the accounting software
applications arena and provides products that satisfy the need of most
businesses at a reasonable price. Based on this, it was decided to drop the Pay

32

module from the OfficeMA and to concentrate on filling the gaps by providing a
system to cover the other areas that are currently done manually.

3.1.1 Obstacles facing small businesses

Even though all the small businesses surveyed have computer networks in their
offices, none of them has utilised it to enable the automation of the above
mentioned Human Resources (HR) areas. The main obstacles that faced these
businesses in obtaining licensed software or developing their own bespoke
applications have been identified as follows:

• The huge licensing fees associated with established software products
and the infrastructure that is usually required to run them.

• The complications of large software products that usually contains much
functionality than what is required.

• The lack of internal IT skills or budget required to develop in-house
bespoke applications.

• The lack of budget needed to outsource the development of a bespoke HR
application to an external specialized company.

• Most of the budget applications on the Internet are either standalone to be
used by a single person or are sold in hosted mode where the data is held
outside the small business office.

3.1.2 What is needed and why?

The small businesses surveyed have expressed a strong need for a cost
effective office management application for the following reasons:

• Reducing the time used to manually process and administer staff,
expenses, holidays and timesheets.

• Enabling better control and archiving of electronic forms and records.

• The ability to process, complete and submit requests and forms remotely
without the need to physically be in the office.

These businesses have also identified the following as must have features and
characteristics of such an application:

• Cheap to buy, install and maintain.

• Simple to use and manage without the need for extra skills.

33

• Can be installed in-house using existing network and computer
specification and capabilities

• Can be run on the Intranet and possibly over the Internet.

• An easy to use application that is user friendly, intuitive, interactive and
responsive.

• A secure application that can be accessed over the Intranet or the Internet
in a secure way. Sensitive data should also be held securely such bank
account details and users’ passwords.

• Provide roles for application users as follows:
1. Administrator – A staff member who have unlimited access to the

application and can create and modify staff details.
2. Accountant – A staff member who is primarily deals with staff pay,

taxes and the paying of expenses. Majority of the times in small
businesses this role is outsourced to an external accountant who
needs to be able to log remotely and have a view of the staff
expenses, timesheets and details. The access rules for this role
should be controlled by the administrator.

3. Regular Staff – Any one else in the small office who use the
system to view and update some of their details and submit
expenses, holidays and timesheets. The access rules for this role
should be controlled by the administrator.

• Provide authentication, authorisation and role based restrictions to enable
administrators, accountants and staff members to login securely and
access data that is allowed for their roles.

3.1.3 Alternative applications

Based on the small businesses requirements identified above the project
researched a number of alternative software applications to the OfficeMA
developed by this project and assessed them in terms of these requirements.
Table 3 below summarises these applications and some of the issues that make
small businesses reluctant to adopt them:

34

Table 3 – Alternative software applications and their issues

Software
Application

Vendor Advantages Small Businesses Issues

SharePoint [53] Microsoft • The ability to customize
the forms and templates
and add more
functionality by adding
plug-ins

• Suitable for large
organisations

• Big licence cost

• Requires Microsoft
server operating
system and Microsoft
SQL server at extra
cost

• Expertise required to
maintain and manage
adds extra cost

Oracle HR [55] Oracle • A wide range of
functionality.

• Suitable for large
organisations

• Big licence cost

• Requires other
software components
at extra cost

• Expertise required to
maintain and manage
adds extra cost

Tommie UK [68] TOMMIE
Systems Ltd

• Reasonable price per
user per day

• A wide range of
functionality

• No required resources as
it is a Web based system

• Contains a great deal
of functionality that can
be distracting and
hiders quick learning

• Only offered in hosted
mode. This is a
problem for small
businesses wanting to
keep the system in-
house and may be on
the Intranet only.

35

3.2 Software used for the Project

The main drive behind this project is the development of a cost effective office
management application by trying to use effective design principles to reduce
design cost and a number of free and Open Source technologies and tools to
reduce the implementation and deployment cost. These free technologies and
tools are listed in (Appendix I) and range from the programming languages used
to implement the application to the component and frameworks used during the
implementation. It is also clear from the requirements that such an application
should be cost effective to install and maintain such as the ability to be deployed
on Window or Linux based systems.

3.2.1 Java Web Components

For the reasons mentioned above the project has decided to use the Java
programming language to implement the OfficeMA. The Java programming
language has come along way and has matured and established itself as an
effective and cheap Object Oriented programming language. Java is also well
suited to multi-tier enterprise applications developed and can benefit from the
availability of a wide range of Open Source frameworks and products. Java is
also platform independent and Java applications can be run on a variety of
operating systems. With the advances in the JVM and the hardware components
such as memory and processor speed nowadays, Java now performs well and is
highly flexible.

In comparison to other technologies such as Microsoft .NET, there is a
requirement and dependency on other proprietary software such as Microsoft
Internet Information Services (IIS) Server and the Microsoft Windows operating
system. Other Open Source technologies such as PHP are geared towards rapid
scripting development for Web sites or simple Web applications. However, the
maintainability of the code becomes unmanageable once the application requires
a large number of software components.

This project used the Java programming language to implement the business
logic and the JavaServer Pages (JSP) to implement the Web pages. Other
technologies such as HTML, CSS and JavaScript were also used on the Web
pages development. This approach aides the separation of concerns in such a
way that the business logic is kept separate from the display and Web pages.
This enables the future expansion of the application to use a different display
technology if required. Other free Java based frameworks and products were
also used to build the OfficeMA such as Hibernate [48], Struts [63], Spring [60]
and Tomcat application server [67].

36

4 Design Methodology

This section outlines the software design methodology used for this project. The
methodology is largely based on the USDP detailed by Bennett et al [4]. The
main focus is on Model - Driven architecture to enable the business-level
functionality to be modelled by standards such as UML and Entity-Relations
Model. This approach reinforces the focus on business first then technology,
enabling the business model to exist independent of any platform for technology.
One advantage of this approach is the ability to freely choose the target platform
and technology or switch from one to technology to another without having to
modify the business model [15].

4.1 Project Lifecycle

The software development activities of the project followed the Traditional
Waterfall Lifecycle (TLC) model to design and implement the OfficeMA (Figure 6).
One of the drawbacks of TLC is the unresponsiveness to change in client
requirements during the project. Another approach to use to overcome the
change in client requirements is the Waterfall lifecycle with feedback loops, yet
again it is not without drawbacks and the resulting iterations can prove very
costly [4]. For the purpose of this project with fairly clear requirements from the
start of the project, the TLC despite its drawbacks offered a very structured
approach to systems development.

Figure 6. Traditional waterfall lifecycle model.

37

4.2 The Software Development Process

The project followed the development process outlined by Bennett, et al [4,
pp119]. This process is consistent with the USDP and incorporates techniques
from other sources such as Arrington and Rayhan [1]. The USDP was favoured
over other software development methodologies such Agile development [65]
due to the clear requirements which were not likely to change over the lifecycle of
the project. The main activities that were followed are summarised as follows:

• Requirements capture and modelling
• Requirement analysis
• System design
• Class design
• User interface design
• Data management design
• Construction
• Testing
• Implementation

These activities are shown in Figure 7 below. Some of the activities depend on
others, but some such the class design, user interface design and logical
database design can be done in parallel.

38

Figure 7. Activities that lead to software deployment, adapted from Grand [21].

Below is a summary of the main activities motioned above alongside their
techniques and key deliverables.

4.2.1 Requirement Capture and Modelling

Techniques

1. Requirement elicitation using:

• Background reading

• Fact finding interviews with the client

• Observation

• Document sampling (Appendix B)

• Questionnaires.

In this project two of the above requirement elicitation methods were used, these
were: fact finding interviews with the client and document sampling of paper or
spreadsheet based forms. These two were sufficient to capture the requirement
for the application.

Business Planning: Business Case, Budget

Deployment

Build

Detailed
Planning

Define Requirements: Requirements Specification

Define High Level Essential Use Cases

Create Prototype

Object Oriented Analysis: Low Level Essential Use Cases,
Conceptual Model, Sequence diagrams

Write
Documentation

and Help

Testing

Design User
Interface

Usability Testing

Object Oriented Design:
Class Diagrams,

Collaboration Diagrams,
State Diagrams

Coding Physical
Database Design

Logical Database
Design

39

2. Use case modelling to be carried out and documented as follows:

• Use case diagram.

• Use case description

• One or more flow of events (i.e. Normal or baseline flow, alternative flows
and exception flows)

• Activity diagram. The use of activity diagrams to aid the understanding of
the use case diagrams is outlined by Arrington and Rayhan [1]. This is
because activity diagrams are less technical than the sequence diagrams
and their use at such an early stage can aid the understanding of the
business stakeholders.

3. Initial system architecture can be developed to help guide subsequent steps
during the development process and can be refined and adjusted as the
development process progresses. The initial system architecture is usually the
package structure of the system.

4. Prototypes of some key user interfaces are to be produced to aid the
requirement understanding and gathering.

Key Deliverables

• Use case model

• Requirements list

• Initial architecture

• Prototypes

4.2.2 Requirement Analysis

40

Each of the use cases produced during the requirement gathering and modelling
stage are separately analysed to identify the classes that support it.

Techniques

1. User case realisation is used to derive communication diagrams to model
the object interaction. The models for each use case are then integrated to
produce an analysis class diagram.

2. Domain analysis can also be used to derive an analysis class diagram.
Textual analysis and Class Responsibility Collaboration (CRC) Cards are two
of the techniques widely used at this stage.

Use case realisation was favoured over domain analysis and used in this project
for two reasons, the first reason is the fact that it is part of the USDP and domain
analysis is not, and the second reason is that the extra modelling involved with
the use case realisation method help in capturing all the classes that satisfy the
use case through the use of collaboration diagrams. The extra modelling involved
also helped in understanding the steps required to satisfy the use case.

Analysis class diagrams can be classified into three stereotypes: boundary,
control and entity. Control classes represent control, coordination and
sequencing. The USDP recommends the use of at least a control class for each
use case [4]. On the other hand boundary classes model the interaction between
the system and its actors. There are two types of boundary [1]:

• User Interfaces – Allow the system to interact with humans. This will form
the starting point for the user interface design.

• System Interfaces – Allow the system to interact with other systems.

Entity classes are used to model some of the real-life object or real-life events.
Instance of entity classes will often require persistent storage of information
about the things they represent. This will also be the starting point for data
persistence requirements and database design.

Key Deliverables

• Analysis models such as analysis class diagrams and communication
diagrams

41

4.2.3 Class design (Detailed design)

The aim of this stage is to elaborate each use case to include design decisions
and enhance the analysis class diagram to produce a detailed design class
diagram.

Techniques

1. Interaction diagrams are used to show detailed object communications.

2. State diagrams are used for objects with complex state behaviour if any.

3. Detailed design class diagram is produced by the integration of the separate
models additional classes are added to cater for interaction with the user
interface and database.

4. Design patterns as explained by Gamma et al. [17] are applied to the class
diagram to address common problems in the domain model.

Key Deliverables

• Design models such as detailed class diagrams, interaction diagrams and
state diagrams.

4.2.4 User Interface Design

Interface design is very dependant on the class design. The user interface
boundary classes identified earlier are enhanced by adding more details to model
the user’s interaction with the system. The user interface followed the design
rules outlined in section (2).

Techniques

1. Prototyping the user interface by following these activities.

2. Designing the boundary classes.

3. Modelling the interaction involved in the interface with sequence diagrams.

4. Modelling the control of the interface using state machines.

42

Key Deliverables

• Design models with interface specification.

4.2.5 Database Design

The database development starts from the persistence requirement for the
application and relates to the presence of entity classes in the analysis class
diagrams. These entity classes usually require the persistence of some or all of
their details. The relational database design principles are followed here (Figure
8) as outlined by Elmasri and Navathe [13] and Connolly and Begg [8].

Besides designing the database layer the project also considered the Object to
Relational Mapping (ORM) layer (Figure 17), which was used to decouple
classes from the mechanism by which instances are stored in the database [2].
As stated by Bennett et al [4] one favoured approach is the use of a persistence
framework, the main feature of which is the use of database brokers or database
mappers. These mediate between the business classes and the database and
are also responsible for Creating, Retrieving, Updating and Deleting (CRUD)
objects.

Techniques

Elmasri and Navathe [13] has summarised the phases of database development
as follows:

1. Requirements collection and analysis.
2. Conceptual database design.
3. Choice of DBMS.
4. Logical database design, which involve the mapping the relations from the

conceptual model into the target DBMS and View design
5. Physical database design.
6. Database system implementation and tuning.

Connolly and Begg [8] provide a more concise design methodology that was
followed on this project, it can be summarised as follows:

• Conceptual database design, such as ER modelling.

• Logical database design, such as relational modelling.

43

• Physical database design, such as DDL, DML, physical storage, indexes
and security measures.

The main reason for choosing these concise steps, is the fact that the focus on
this project is on the domain model (classes) developed using the USDP rather
than starting from data requirements. As mentioned above the requirements for
the database model come from the persistent entities in the analysis classes,
which have the required attributes and their types already defined. This also
means that a great deal of the design is already done at the analysis stage.

Key Deliverables

• Conceptual data models.

• DDL and DML SQL

Figure 8. Sample Model of Database Development [23].

44

4.2.6 Construction, testing and implementation

Techniques

1. Implementing the business logic.

2. Implementing the user interface.

3. Implementing the database.

4. System documentations and help files are written

5. Completed system is deployed and tested. Found bugs are fixed in
accordance to severity and priority, some are even left in the final product if
these were accepted by the client and the bugs are of low priority. The final
tested product is released for deployment

Key Deliverables

• Constructed system documentation.

• Source code for the developed application

• Installed system.

45

5 Preliminary System Design

The preliminary system design aims at providing an analysis model, which
contains a user interface prototype and a number of UML models such as use
case diagrams, activity diagrams, communication diagram, sequence diagrams
and finally an analysis class diagram.

5.1 Requirements Gathering

The requirements for the OfficeMA were captured through a number of fact
finding interviews with the client and the sampling of various documentations
(Appendix B). The results of the fact finding interviews have been incorporated
into the use case descriptions. These interviews were also conducted during the
analysis stage to clarify outstanding issues. The Jude UML CASE tool (Appendix
K) was used to construct and produce the various UML models used during the
requirements gathering, requirements analysis and design phases of this project.

5.2 Initial System Architecture

The initial package structure of the system is shown in Figure 9 below. This is
based on the logical packaging of the high level use cases of the application, and
can be summarised as follows:

• Staff management

• Expenses management

• Holidays management

• Task management

• Time booking management

• System settings management

46

Figure 9. Initial package architecture for OfficeMA

5.3 Requirement Capture and Modelling

5.3.1 Prototyping the User Interface

As part of the requirements capture process, a number of prototypes have been
developed to aide the use cases and the clarification of the requirements with the
client. Methods used to create prototypes for traditional desktop applications
were used in this project. The author has outlined some techniques that can be
used to create prototypes for Rich Internet Applications [11]. These techniques
can be summarised as follows:

• Get a catalogue of currently used visual widgets such as controls,
commands, pointers and windows widgets. An example is the Visual Index
on the Microsoft Window Vista User Experience guide [71].

• Short-list the widgets that can be included in the prototype and the
completed user interface later on. These are widgets that will be available
in the toolkit used for the user interface implementation or can easily be
developed.

• Construct the user interface prototype using these widgets.

47

5.3.2 Staff Management Requirements

Requirements Summary

The application should be able to hold employee details and support user roles,
so that different information can be updated by different roles.

• Enable admin users to configure access rights of various users of the
system depending on their role

• The ability to update/add employee details such as name, contact
numbers, email address, date joined, address, national insurance number,
bank details, grade, salary, holiday entitlement, tax code etc...

Requirements List

R1 The system should enable the administration of staff details using the. Such
as adding new staff, changing and viewing staff details in which case the staff
member will receive a task to review the changes. Administrators should be
able to add/view/edit all staff details. Normal staff should be able to edit some
of their details in which case the administrator should get a task to verify
these updates. Normal staff should also be able to view a brief summary of
other staff details.

Table 4 – Requirements summary for staff management
No. Requirement Use Case(s)
1.1 Staff to view their personal details 1.1
1.2 Staff to edit some of their personal details, such as

contact numbers and address
1.5

1.3 Staff to search for other staff members by name, id or
current project, work-stream, employee type, etc…

1.2

1.4 Staff to view a brief summary of other staffs’ details,
such as email address, name, photo, phone numbers
and grade

1.3

1.5 Administrator and Accountant to view complete staff
details

1.4

1.6 Administrator to edit staff details, such as change of
grade, salary, online access

1.6

1.7 Administrator to add new members of staff such as
personal, address, employment and online access
details

1.7

48

Use Cases

Figure 10. Use cases for staff management.

Use Cases summary

The detailed use case descriptions are provided in Appendix C.

Table 5 – Use cases summary for staff management
No. Use Case Description
1.1 View personal details The current member of staff views their personal

details
1.2 Find staff Search for a member of staff or browse all staff

details
1.3 View brief staff details Regular staff members can view a brief summary

of other staff details
1.4 View complete staff

details
Admin, accountant users can view all the details
for any member of staff

49

1.5 Edit personal details Members of staff can edit their personal details.
Regular staff can edit only a subset of their
details. Admin users can edit all their personal
details

1.6 Edit staff details Admin users can edit other staff details.
1.7 Add Staff Add a new member of staff. First all the Available

grades, work-streams, online access roles and
staff names are retrieved. The admin user
completes the personal, bank, address,
employment and online details.

5.3.3 Expenses Management Requirements

Requirements List

R2 The system should allow members of staff to enter/save/submit their
expenses. The system should also notify approvers to approve/pay submitted
expenses and allow approvers to either approve or reject an expense

Table 6 – Requirements summary for expenses management
No. Requirement Use Case(s)
2.1 Staff to view their saved/submitted expenses 2.1, 2.2
2.2 Staff to be able to edit their saved expenses and

save/submit them
2.4

2.2 Staff to be able to add new expenses, the system should
detect if saved expenses already exist for chosen period.

2.4, 2.3

2.2 Staff can only edit saved or rejected expenses
2.3 Expenses period should be configurable, but defaults to a

months
2.4 Staff can only edit/create expenses for periods that does

not already have submitted expenses
2.5 Expenses approver should be notified through tasks/email

when an expense is submitted
2.6 Expenses approver should be able to approve/reject

submitted expenses
2.6

2.7 Accountant should be notified when an expense is
approved and should be able to pay it

2.7

2.8 Staff should be notified through tasks/email when their
submitted expenses status change

2.9 Staff should be able to search their expenses and
categorise them by year/status

2.1, 2.2

2.10 Approvers should be able to search submitted expenses 2.5

50

for which they are responsible for approving and
categorise them by year/status

2.11 Staff can either fill in a mileage or an amount. Current
mileage is added to previously entered mileage and has
different rates of payments.

2.4

2.12 The system should allow the staff to enter a mnemonic
when entering expenses, an entered mnemonic updates
type, description and amt/miles, any changes to these
fields will update the saved mnemonic.

2.4

2.13 Staff should be able to export location entries from
timesheets using the location mnemonic

2.4

2.14 A saved or submitted expense should contain at least one
expense item.

Use Cases

Figure 11. Expenses management use cases

51

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 7 – Use cases summary for expenses management
No. Use Case Description
2.1 Find Expenses Staff members can find their expenses using an

expenses browser, where they can search by year or
expenses status. Approvers can also search
expenses they are approving by staff name, year or
expenses status

2.2 View Expenses After finding an expense the staff member can view
its details.

2.3 Add Expenses A staff member can add new expenses after
choosing the period of the expense if a saved
expense exist for the chosen period then the staff
edits the expense using the edit expenses use case

2.4 Edit Expenses After viewing an editable expense or trying to add a
new expense for a period where a saved expense
already exist the staff member is allowed to edit the
expense and cancel, save or submit their changes

2.5 View Staff
Expenses

The expenses approver should be able to view the
staff expenses in pending/approved or paid states

2.6 Approve/Reject
Expenses

The expenses approver should be able approve or
reject the staff expenses in pending state

2.7 Pay Expenses The expenses approver or the accountant should be
able to pay the expenses in approved state

52

5.3.4 Authentication and Authorisation Requirements

Requirements Summary

R3 The system should authenticate users before allowing them to use it. Each
user should have a user role as well to determine if they are authorised to
perform a specific action

Requirement List

Table 8 – Requirements summary for authentication and authorisation
No. Requirement Use Case(s)
3.1 The system should run on a secure web server using

HTTPS
3.2 The user should provide a username and password to

login to the system
3.1

3.3 The system should authenticate the user against stored
user details and allow access if details match

3.1

3.4 The system should lock the user account after three
unsuccessful login attempts and create a task for the
administrator

3.1

3.5 After a user logs in successfully the system should assign
the role for the user in order to determine if the user is
allowed to perform a specific action or not

3.1

Use Cases

Figure 12. Login use case diagram

53

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 9 – Use cases summary for authentication and authorisation
No. Use Case Description
3.1 Login The member of staff provides their username

and password to login and the system
performs authentication and authorisation on
the details provided.

5.3.5 System Settings Management

Requirements Summary

R4 The user should be able to change some of the settings in the system, such
as holiday roles, projects, work streams, etc…

Requirement List

Table 10 – Requirements summary for system settings management
No. Requirement Use Case(s)
4.1 Administrators should be able to configure time booking

management settings:
• Add/Edit a work stream
• Add/Edit projects to a work stream
• Configure the working days and beginning of the

week
• Configure timesheet entry unit (e.g. hour/minute)

4.1, 4.2

4.2 Administrators should be able to configure expenses
settings:

• Add/Edit expenses categories
• Add/Edit list of expenses approvers
• Add/Edit expenses period (e.g. 1 month, 1 week)

4.1, 4.2

4.3 Administrators should be able to configure staff
management settings:

• Add/Edit list of available grades (consultant, senior
consultant, principal consultant, director)

4.1, 4.2

54

• Add/Edit list of online roles (staff, administrator,
accountant)

• Add/Edit list of available personal managers

4.4 Administrators should be able to configure holiday
management settings:

• Add/Edit list of holiday approvers
• Add/Edit holiday rules, entitlement, holiday year

start/end, carryover limit, carryover cut-off.

4.1, 4.2

4.5 Administrators should be able to configure task
management settings.

• Send emails when creating tasks.

4.1, 4.2

Use Cases

Figure 13. System settings management use cases diagram

55

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 11 – Use cases summary for system settings
No. Use Case Description
4.1 View system Settings An administrator can view the system wide

settings and update/save them
4.2 Update system setting After viewing the system settings the

administrator updates the setting
4.3 Update my settings A staff member can change their online password

or update their online preferences such as
desktop background colour, etc...

5.3.6 Time Booking Requirements

Requirements Summary

R5 The staff members should be able to book their time to project in their work
stream. The staff members should also be able to enter any other type of
absence through the time booking system, such as unpaid leave, sick leave
and holiday. The system should cross check any holiday entered in the
timesheet against the holidays request/taken. The system should also be able
to auto populate the timesheet with holiday entries when these exist in the
holiday subsystem

Requirement List

Table 12 – Requirements summary for time booking
No. Requirement Use Case(s)
5.1 Staff member should be able to view their time sheet and

if they choose they can add, update or edit entries and
then save their timesheet

5.1

5.2 Staff members should be able to view a summary of their
timesheet entries for a given period and filter by project

5.2

5.3 Administrators should be able to view other staff
timesheets

5.1

5.4 Administrators should be able to view a summary of other
staff timesheets and filter by project

5.2

56

5.5 The system should be able to auto populate holiday from
the holiday subsystem when the staff member is
completing the relevant period

Use Cases

Figure 14. Time booking use cases diagram

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 13 – Use cases summary for time booking
No. Use Case Description
5.1 View/Add Timesheet Staff members can view their timesheet for a

specific period and also update/save their
timesheet or add a new entry. Administrator can
view or edit timesheet entries for all staff members

5.2 View timesheet
summary

Staff members views a summary of their timesheet
entries

57

5.3.7 Holiday Management Requirements

Requirements Summary

R6 Staff members should be able to request holidays through the system. The
system should be able to display the holidays entitlement, holidays available,
request and taken for previous, current and next year. The system should also
enforce the holiday settings such as leave carryover, etc…. The holiday
approver should be able to approve or reject requested holiday. The staff
member should also be able to cancel their requested holidays if not
approved, if approved then only the approver can cancel the request.
Approvers should be able to view holiday details for their staff members. Staff
member should be able to see a holiday calendar showing the taken and
approved and requested holidays for other staff members.

Requirement List

Table 14 – Requirements summary for holiday management
No. Requirement Use Case(s)
6.1 Staff to view their requested/approved holidays 6.1
6.2 Staff to be able to cancel their requested if not approved 6.1
6.3 Staff to be able to request new holiday 6.1
6.4 The system should enforce the holiday settings entered as

part of the system settings management use cases
6.5 Holiday approver should be notified through tasks/email

when a new holiday request is submitted
6.6 Holiday approver should be able to approve/reject

submitted holidays
6.1

6.7 Staff should be notified through tasks/email when their
submitted holiday status change

6.8 Approvers should be able to view holiday details for staff
members they are approving for and change their holiday
status

6.1

6.9 Staff should be able to import holiday entries from the
timesheet when these don't exist in the holiday subsystem

6.10 A holiday request should be for at least half a day and
weekends are automatically ignored.

6.11 Staff member should be able to see a holiday calendar
showing the taken and approved and requested holidays
for other staff members.

6.2

58

Use Cases

Figure 15. Holiday management use cases

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 15 – Use cases summary for holiday management
No. Use Case Description
6.1 View Holiday details Staff member can view their holiday summary and

request new holiday or cancel a requested holiday.
The system should also enforce the holiday roles
and import holidays entered in the time booking
system. Holiday approvers should be able to view
the holiday for their staff and approve or reject their
holidays.

6.2 View Holiday
Calendar

Staff member can view a calendar with the holiday
of all any of the staff members. The staff member
can also configure the number of weeks to view

59

5.3.8 Task Management Requirements

Requirements Summary

R7 Staff members should be able to the tasks assigned to them by the system.
The staff members should be to delete the task or set the task as complete.
The system need not validate that a staff member has actually completed
their task

Requirement List

Table 16 – Requirements summary for task management
No. Requirement Use Case(s)
7.1 Staff members should be able to view their assigned tasks 7.1
7.2 Staff members should be able to set their tasks to

completed
7.1

7.3 Staff members should be able to delete their assigned
tasks

7.2

Use Cases

Figure 16. Task management use cases

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

60

Table 17 – Use cases summary for task management
No. Use Case Description
7.1 View Tasks Staff members should be able to view their tasks and

set them as completed if desired
7.2 Delete tasks After viewing the tasks the staff members should be to

delete these tasks

5.4 Requirement Analysis

Following the use case modelling, the analysis class diagrams were identified
using the use case realisation process. Bennett et al [4] defines the use case
realisation process as:

“…, use case realisation involves the identification of a possible set of classes,
together with an understanding of how those classes might interact to deliver the
functionality of the use case”

The collaboration between classes is usually modelled using UML 2.0
Communication diagrams, which are constructed starting from the actor by using
a boundary class, then a control class to coordinate the logic in the use case and
finally entity classes and the links between them. The author of this dissertation
has drawn the conclusion that using use case realisation involves steps similar to
the CRC method in trying to identify candidate objects, messages and links. In
addition to this, use case realisation offers the ability to easily construct a class
diagram from the communication diagram and offers better visibility than CRC.
The following steps were used to construct the analysis class diagrams:

• For each use case construct a communication diagram.

• Use the objects in the communication diagram to construct the analysis
classes and their stereotypes.

• Use the link between objects to identify association between classes and
the multiplicity on each side.

• Use the messages to identify operations for the analysis classes and
directions for associations.

• After identifying the operation for the analysis class diagrams, the
attributes are identified from the requirements list and the communication
diagrams method signature.

Appendix D contains the communication diagrams and the derived analysis class
diagrams for each of the use cases developed above.

61

6 Implementation Strategy

6.1 System Architecture

The project design followed a layered architecture (Figure 17) to ensure
encapsulation, maintainability, reuse and separation of concerns. The design
covered the user interface layer, business logic layer and the database layer, with
special emphasis on the user interface design. For such an application with
database requirements to persist the data, the minimum that can be used is two
tiers architecture; however this means that the business logic and the
presentation logic will be included in one layer. In the case of the OfficeMA the
two tiers makes code maintainability and future expansion difficult due to the
scope and complexity of the application.

For this reason the three tier architecture was used to aides the separation of
concerns in such a way that the business logic is kept separate from the display
and Web pages. This enables future expansion of the application to use a
different display technology if required.

Internet

Relational Database

Presentation Layer

Business Logic
Layer

Data Access Layer

Database Layer

Object to Relational Mapping (ORM)

Business Logic Code & Domain Model Objects

Graphical User Interface (HTML, JavaScript & CSS)

Presentation Layer Logic

ODBC, JDBC

Data Formatters (HTML, XML, Text, etc…)

HTTP Request

HTTP Response

H
TTP RequestH

TT
P

R
es

po
ns

e

Client Layer

Remote Server/s

Figure 17. Layered architecture for a typical Web application.

62

The various implementation strategies and methodologies for the application
layers have been identified below following a bottom up approach, starting from
the database layer and moving up to the user interface layer. The aim is to
develop a robust application that can be ported to different technologies without
considerable changes to the business layer.

6.2 Database layer

6.2.1 Choosing a DMBS

The project used a relational database for its persistence requirements. As the
project is driven towards cost reduction the first choice was to use an Open
source DMBS. The two options that was available for the project was either using
MySQL or PostgreSQL (Appendix I). It was decided based on the comparison
shown in Table 18 to use the PostgreSQL database server as it strongly
conforms to the ANSI - SQL 92/99 standards. This will support the transactional
nature of the OfficeMA data requirements and ensures data integrity through the
ability to use Check constraints, domains and Triggers. MySQL on the other hand
is less compliant with ANSI standards for example Check constraints are not yet
supported as indicated in Table 18 below. MySQL is more suited as a backend
for Web sites where fact access and data reads are required.

Table 18 – Some of the features of PostgreSQL vs. MySQL [20]
Feature PostgreSQL 8.0 MySQL 5.0
Performance Slower Faster
Sub-selects Yes Yes
Triggers Yes Yes
Full Joins Yes No
Constraints Yes No
Cursors Yes Partial

6.2.2 Database Implementation

After choosing the target DBMS the logical database design resulting from the
detailed class diagram was revised and converted into a physical model to suit
the PostgreSQL database. This activity included writing SQL for Data Definition
Language (DDL), Data Manipulation Language (DML) and creating database
indexes. The implementation strategy is outlined below:

63

• The candidate entities for the relational model were identified from the
entity classes in the detailed class diagram.

• An Entity-Relation model was developed for the above entities.

• A relational model was build using these candidate entities.

• A physical model was build using SQL.

• The database tables were created and populated with sample data using
SQL.

• Database testing was done using SQL queries directly on the database
layer.

The crow’s feet notation [23] was used for the ER modelling to represent the
cordiality of the relation and the participation conditions as explained in Table 19
below.

Table 19 – Crow’s feet notation used in the ER- modelling
Symbol Meaning
Open blob - Zero or one participation
Closed blob - Exactly one participation
Open blob and crow’s foot - Zero or more participation
Closed blob and crow’s foot - One or more participation

6.3 Business Logic Layer

6.3.1 POJO Architectural Pattern

The heart of the OfficeMA is the business logic layer and consists of the domain
model classes developed from the detailed class diagram. The detailed class
diagram was developed as a direct result of use case modelling, which means
that the domain model classes directly represent the business objects and
requirements. The implementation of the business logic layer focused on
transforming the detailed classes into runtime classes using the Plain Old Java
Objects (POJOs) design pattern [30]. POJOs are simply JavaBean objects that
enclose their attributes and operations. In JavaBeans, attributes are declared as
private and setter / getter methods are defined to access these attributes.

In the developed domain model, entity classes alone were not enough to satisfy
the business logic. Evans [15] has identified as part of the POJOs pattern a
number of roles in the domain model by which classes can be categorised. A

64

class’s role imply certain type of responsibilities and relationship with other
classes in the domain model, these can be summarised as follows [30]:

• Entities - Objects with a distinct identity.

• Value Objects - Objects with no distinct identity.

• Factories - Define methods for creating entities.

• Repositories - Manage collections of entities and encapsulate the
persistence framework.

• Services - Implement responsibilities that can not be assigned to a single
class and encapsulates the domain model.

Figure 18 below shows part of the detailed class model for the application. The
diagram includes a service class which is invoked from the presentation layer.
The service also includes references to the various repository classes that are
used to persist or retrieve the entity objects from the database. As seen from the
diagram, Interfaces are used so that other classes can have reference to the
interface without having to worry about the implementation. The implementation
can be changed at any time and as long as the method signatures remain the
same, there will be no impact on the other classes as a result of changing the
service or repository implementation.

Figure 18. Part of detailed class model showing entities, a repository and a
service

65

6.3.2 Spring Framework and Dependency Injection

There is another unanswered questioning regards to the design shown above in
Figure 18. If the service classes reference the repository classes by interface
how would they be able to instantiate these interfaces without knowing about the
implementation concrete classes. Instantiating these repository classes using the
concrete implementation classes tightly couples the code together and makes it
hard to modify a single class as the change would likely to ripple through the
other code and results in multiple class changes.

There is also another issue, the fact that POJOs by themselves are insufficient to
run the application as Richardson [30] has stated:

 “In an enterprise application you need services such as transaction
management, security and persistence…”

To address the above issues the Spring framework [60] was used. Spring is a
lightweight dependency injection, aspect-oriented container and framework. The
term dependency injection is very important in regards to the reference by
interface issue identified above. Walls [35] describes the benefits of dependency
injection as follows:

“The key benefit of DI is loose coupling. If an object only knows about its
dependencies by their interface (not their implementation or how they were
instantiated) then the dependency can be swapped out with a different
implementation without the depending object knowing the difference”

Spring framework can be configured to automatically instantiate and inject the
dependency of each object in the domain model, this reduces coupling and
encourages programming using interfaces. For example in Figure 18 the
repository instances are create by Spring and then injected into the service at
runtime. Spring is favoured over Enterprise Java Beans (EJB) as it is lightweight
and can also run in a lightweight container such as Tomcat.

The alternatives to Spring such as EJB 2.1 is been largely criticized by the Java
community for its shortcoming and declarative programming model. EJB 3.0 on
the other hand is considered a step on the right side, but the technology is still
new and the project has decided to use aspects of the its standard such as Java
Persistence API [50] which when coined with the new features in Java 5 offers an
effective way of persisting Java applications. EJB technology requires an EJB
compliant container which requires more processing power and mostly geared
towards multi-tier enterprise applications development rather than lightweight
Web applications.

66

6.3.3 Domain model classes

The implementation strategy for domain model classes can be summarised as
follows:

• The detailed class diagram was developed by applying the domain model
roles discussed above.

• The detailed classes’ skeletons were then exported to Java code using
Jude UML CASE tool (Appendix K).

• Using the Eclipse IDE (Appendix I) the empty skeleton methods were
populated with business logic derived from the sequence diagrams. In the
simple case of entity classes these methods were getters and setters
methods.

• For entity classes UML associations were converted into object references
where appropriate.

• Entity classes were annotated with Java Persistence API annotations [50]
according to the relational model developed for the database layer. This
tells the JPA implementation how to map and persist these classes into
database tables.

• For persistent entities a repository interface and implementation was
coded. Repository classes were also annotated with the Spring
@Transactional interface, this ensures that all the CRUD method in the
repository are transactional and follow the ACID concept.

• Finally the class of the service responsible for executing the logic in the
current package is coded; this service only have a reference to the
interfaces of the repository it needs to use to persist the domain model
entities. The reference to the objects to be injected was added to the
Spring configuration file.

• The above steps are repeated for each of the packages in the detailed
class diagram.

6.3.4 Object to relational mapping framework

The repository interfaces defined above need to be implemented somehow to
persist the application objects into the database; however, before persisting
these objects some mapping needs to be done to convert these objects into
database entities. One approach of doing this is to manually map each object
and write SQL to persist them into the database directly through the Java
Database Connectivity (JDBC) driver. But this approach has some
disadvantages as summarised below [2]:

67

• The mapping from objects to database entities is a time consuming
process.

• The implementation is database specific and will need major changes to
the repository code, mapping code and SQL if a different database
implementation to be used.

A widely used solution to the problem above is the use of Object Relational
Mapping (ORM) framework (Figure 19). Baur and King [2] describe the ORM as
follows:

“In a nutshell, object/relational mapping is the automated (and transparent)
persistence of objects in a Java application to the tables in a relational database,
using metadata that describes the mapping between the objects and the
database.”

Figure 19. Business logic layer showing domain model and ORM layer

68

Using an ORM framework has many advantages, some of which are [2]:

• Increased productivity compared to manually mapping objects to relational
tables.

• Easy maintainability as the code in the application is purely focused on
business logic and the mapping is described using metadata.

• ORM has better performance as it can support caching, lazy loading and
many other features.

• The developer can include native SQL statements if it was proven hard to
implement the required mapping/functionality through the ORM layer.

• Using an ORM framework such as Hibernate is recommended by the
Open Web Application Security Project (OWASP) [57] to avoid common
Web application attacks such as Remote SQL Injection, as it provide
proper filtering before querying the database.

• Finally, ORMs are vendor independent and can work with a large number
of databases, which increases the portability of the application.

This project has used the Java Persistence API standard from Sun’s EJB3
specification [50], the JPA is considered by many as a big step in the right
direction compared with EJB2 entity beans. The standard uses metadata to
describe the object to relational mappings; this metadata can either be in XML
configuration files or embedded in the code using the new Java 5 annotation
feature. Hibernate [47], a very popular and widely used ORM framework provide
an implementation for the JPA and adds many more features making it the best
choice for the ORM layer.

When mapping objects into relational entities the author needed to consider the
concept of referencing in the object oriented world. For example in the case of
One to Many E-R mapping it might be looked as Many to One from object
oriented side. This arises from the fact that when loading entities from the
database and mapping these into objects a whole object hierarchy will need to be
loaded and constructed. So it is crucial to decide on choosing the main object
which will be loaded and if the entire objects it is referencing (entire object graph)
will also be constructed.

Considering for example the StaffMember object (Figure 45), this object has One
to One, One to Many, Many to Many and most importantly Many to One
reference with other objects. The Many to One mapping is as a result of looking
at the relation from the StaffMember point of view, but in database terms Many to
One is simply a One to Many relation as there is no concept of Navigability in
database term. Having said this, the relational model can be checked against
user transactions using the transaction pathways technique outlined by Connolly
and Begg [8]. However, in the application’s case this is not required as the

69

database model was designed from the entities in the class diagram, which
already supports the user transactions.

The author has devised an approach that can be used to map relations form the
E-R model into JPA annotations which is summarised in Table 20 below. This
approach was then followed to map the entity classes into the developed data
model using JPA annotations. All the Many to Many relationships were resolved
during the logical database design stage by introducing a third dependent
relation, and hence there was no need to use @ManyToMany JPA mapping.

It was also revealed that cascade annotation for foreign key updates on the
parent table should not be included in the child entity as this will result in the
deletion of the parent row whenever a child row is deleted. It was clear that this
constraint should be implemented in the database schema and not included in
the JPA annotation as it does not have the desired effect.

Table 20 – ER-Model and Relational Mode to JPA and Hibernate mappings
ER-Model Relational Mode JPA Annotation
Entity Relation @Entity
Identifier Primary key @Id

Alternate Key @UniqueConstraint(columnNames
= {"staff_id", "holiday_year"})

Relationships:
One to One Primary key + Foreign key mechanism

– plus declaring the Foreign key as
alternate key.

Mandatory participation condition:
Left side – can be achieved using a
constraint.
Right side – not allowing null for
Foreign key.

@OneToOne

Declaring alternate key:
@UniqueConstraint(columnNames
= {"staff_id", "holiday_year"})

Declaring a check constraint:
@org.hibernate.annotations.Check(

 constraints = "(mileage
is not null) or (amount is not null)"
)

Declaring not null:
@Column(nullable = false)

One to Many Primary key + Foreign key mechanism.

Mandatory Participation condition:
Left side – can be achieved using a
constraint.

Right side – not allowing null for
Foreign key.

@OneToMany annotation created
in the owning class

Declaring a check constraint:
@org.hibernate.annotations.Check(

 constraints = "(mileage
is not null) or (amount is not null)"
)

Declaring not null:
@Column(nullable = false)

Cascading:

70

Cascading works well when
annotating the owning relationship
@OneToMany(cascade =
{CascadeType.ALL})

Many to One Primary key + Foreign key mechanism.

Mandatory Participation condition:
Left side – not allowing null for Foreign
key.

Right side – can be achieved using a
constraint.

@ManyToOne annotation created
in the owned class

Declaring a check constraint:
@org.hibernate.annotations.Check(

 constraints = "(mileage
is not null) or (amount is not null)"
)

Declaring not null:
@Column(nullable = false)

Cascading:
Cascading annotation should not
be used in the child class, as will
result in the primary key table being
updated. Should be included in the
database schema

Many to Many Should be resolved at the Logical
database design, by resolving the M-N
relationships into 3 relations

Mandatory Participation condition:
Implemented as above for One to Many
relationships on the One side of the two
owning relations

@ManyToMany

The expected name for the
intermediate table is table1_table2
unless specified otherwise in the
annotation.

71

6.3.5 Coding practices

Code Repository

As the project code was relatively large, with many classes, packages and HTML
files, it was decided to use a code repository to store the code. This was
important to avoid accidental loss to the code resulting from hardware or software
failure, and although only one developer was working on the project, having the
code in a central repository made it easy to work on different computers.

Google code was used to host the project development (Appendix L), as it offers
a project home page with downloads section, a Wiki, issues area for raising bugs
and source area for checking in and out the code. Google code uses a widely
known version control system called the Subversion repository. Using Google
code has many advantages some of which can be summarised as follows:

• Central repository for the project code with revision history.

• Issues section where bugs can be logged and tracked.

• Web access makes it easy for other people to view or use the code.

• A Wiki page where project related help and documentations can be
published.

6.3.6 Unit testing the domain model classes

After developing the Service classes for each of the packages in the OfficeMA,
unit tests were written for each of the services. These unit tests focused on
testing the Service, Repository and Entity classes in the domain model and
ensuring that the correct logic was performed as outlined in the use cases. JUnit,
a widely used Java unit testing framework was used to carryout these tests
(Appendix I). JUnit framework is also integrated with the Eclipse IDE and can be
run from within the Integrated Development Environment (IDE) (Figure 20).

72

Figure 20. JUnit tests executed from within the Eclipse IDE.

73

6.4 Presentation Layer

As explained in section (2), the user interface used for OfficeMA is a Rich Internet
Application that runs on the client side and communicates with the server using
AJAX. This approach to designing web applications requires proper design and
implementation compared to designing a standard HTML user interface. A
development methodology was developed for the user interface in this project
based on Crane’s four defining principles of AJAX [10] as summarised below:

1. The browser hosts an application, not content. Hence the user
interface is developed to run entirely on the client’s browser and
communications with the server need to be done using AJAX. As no HTML
is sent to the browser after the main application is loaded the user
interface has to be self sufficient and able to deal with all scenarios on the
client side and only contact the server for data. For this to be achieved the
client application followed the Model-Viewer-Controller design pattern.

2. The server delivers data, not content. This means that the server only
sends the contents to the application once and any transfer thereafter will
be of pure data. That server should be able to covey data and status
messages to the client, and the transfer of data should be done in a
lightweight protocol that can easily be constructed as objects on the client
side.

3. User interaction with the application can be fluid and continuous.
The user interface should be rich and use visual widgets that enhance the
user productivity and experience. This can be achieved by using widgets
such as buttons, menus, tabs and dialogues where appropriate (Table 1)

4. This is real coding and requires discipline. This is a crucial point for an
application that will be running entirely from the browser on the client side
and hence the project has seriously considered many issues such as
security, error handling, session management and other functionality.

74

Figure 21. Office Management Application Presentation layer

6.4.1 Presentation Layer logic and data formatters

The presentation layer logic shown as a controller and a model in the Figure 21
above was required to mediate between the business layer and the user
interface. This layer also carries out data formatting to suit the presentation
technology being used. For this project Struts 2 [63], a widely used and popular
web Model-View-Controller framework was used. Struts is build on the top of the
Java Servlet and JavaServer Pages technology, it offers many features and
enhancement to mainstream web development.

Struts 2 framework

Struts 2 was used for the following reasons:

• Struts 2 supports validation of user input, this validation can be client or
server side and is recommended by the Open Web Application Security
Project (OWASP) [57] to avoid common Web application attack to do with
input validation and type conversion.

• Struts 2 automatically type converts and populate all the string values of
the request parameters into the instance variables of the Java class
handling the HTTP request.

75

• Struts 2 enables the developer to use a single class to act as a controller
and handle various types of web requests by using a method for each
business operation.

• Struts 2 offers the ability to work straight from the business model without
the need to create intermediary objects.

• Struts 2 integrates with the Spring framework well.

• Struts 2 defines a concept of interceptors which is similar to the J2EE
Filters. Interceptors offer the chance to create custom data formatter to
format the data returned on the HTTP response into XML, JSON, etc…

The implementation strategy for this presentation logic layer was to write a class,
termed an Action class to handle a number of operations. Validation information
for the input for this class was also defined in XML configuration files. The output
result of the Action class execution was formatted into the JavaScript Object
Notation (JSON) [52] format using the Struts 2 JSON plug-in [62].

JavaScript Object Notation (JSON)

JSON is a string representation of JavaScript objects; it’s lightweight and shorter
than XML or HTML. JSON strings can be converted into JavaScript object using
the eval JavaScript function as shown in Figure 22 below.

eval (‘[“staffMember” :{

"dateJoined":"01\/20\/2008",

"emailAddress":"omer.dawelbeit@gmail.com"
,

"employmentType":"Permanent" ,

"fullName":"Omer Dawelbeit",

"grade":"Senior Consultant",

"Id":87,

"workTelNo":""

}]’);

Figure 22. Using JavaScript eval function on a JSON string to create a
JavaScript Object

76

This mechanism was used to transport data from the presentation logic layer to
the controller on client side user interface (Figure 21). The following methodology
was devised and use when developing the presentation logic layer components
to retrieve or process data for the user interface:

• For the functionality required by the user interface, for example query staff
details, define an Action class with a method name “query”

• Write validation criteria for the Action class input parameter from the user
interface.

• Check the domain model entity can be used directly or a Wrapper object is
required, for example to restrict or change the type of some of the fields

• Define the Action class results as JSON type so that Struts 2 can
automatically serialize the Java objects into JSON string.

• Return a result status object to indicate the status of execution of the
Action class. As shown below the result status object contains a message
and a status, the status is either S for success or E for error. This is used
by the client side user interface to determine the appropriate action.

["resultStatus":{"message":"Staff members details queried successfully","status":"S"}]

6.4.2 Graphical user interface

The user interface for the application is transferred to the client only once when
the user authenticates successfully to the application. The UI then resides on the
client’s browser and handles itself according to the actions of the user as shown
in Figure 21. This means that the user interface will need to be properly tested on
the list of supported browsers and any issues resolved before hand.

The user interface follows the Model-View-Controller pattern and was
implemented using Dojo, a rich DHTML, AJAX enabled toolkit [42]. The Dojo
toolkit streamlines JavaScript development by providing custom rich widgets
(Table 1), many utility functions and an AJAX library. Since JavaScript can be
used as an object oriented language based on prototyping, the Dojo toolkit
provide a Java like style to defining objects and inheritance in JavaScript. This
approach was used for all the JavaScript objects that comprises the user
interface.

Widget objects defined in Dojo can also have a HTML template and linked to
Document Object Model (DOM) nodes. The widget object then manipulates the

77

HTML nodes to display information or responds to user’s actions such as button
clicks, etc….

A new approach to web user interface development

The approach followed to develop the rich HTML user interface is not widely
used for Web applications although the process used is deeply rooted in the
USDP and was used for a long time to model user interface for desktop
applications developed in languages such as Java and Visual Basic. Having said
this, the fact that JavaScript supports object orientation, it is theoretically possible
to use the same methodology outlined by Bennett et al [4] to design the user
interface for Rich Internet Applications.

Bennett et al [4] summarised the steps used in designing the boundary classes
as follow:

• Prototyping the user interface.

• Designing the classes.

• Modelling the interaction involved in the interface using interaction or
communication diagrams.

• Modelling the control of the interface using state machines.

The client side View

The view component on the client side user interface (Figure 21) consists of
DOM nodes and JavaScript Widgets. The HTML in the view is automatically
constructed in the browser as DOM nodes. The JavaScript widgets use
JavaScript to control a number of DOM nodes that make up the widget.
JavaScript widgets were used for complex user interface components such as
widgets that control other widgets to perform a specific operation.

78

Figure 23. View Staff Details dialogue widget.
For example dialogue boxes widgets contain and control a number of other
widgets as shown below for the “Staff Details” widget (Figure 23). Each
JavaScript widget consists of the following:

1. JavaScript object, the author used the term View Support Object (VSO) to
describe these JavaScript Objects as they control the DOM nodes
attached to them (Figure 21).

2. DOM nodes to represent the HTML template for the widget.
3. Other child widgets as widgets can be nested.

The high level container widgets in the user interface such as floating windows
and dialogue boxes were implemented using the following approach:

• Define the widget template which consists of HTML, CSS and other
widgets, this is defined in a HTML file e.g. viewStaff.html. This will later
on be constructed as DOM nodes in the browser.

• Define the View Support Object (VSO) for the widget in a JavaScript file,
e.g. viewStaff.js using a JavaScript class definition from the Dojo toolkit
[43] as shown in Figure 24 below.

To define a widget class (supports Mixins, multiple inheritance):

dojo.widget.defineWidget("ClassName", [SuperClass1, SuperClass2, …], {
property1: “”,
property2: “”,
method1: function() {

// method code here
}

}

To define a non-widget class (supports Mixins, multiple inheritance):

79

dojo.declare("ClassName",[SuperClass1, SuperClass2, …], {
property1: “”,
property2: “”,
// acts as a Java constructor
initializer : function(urls) {

this.urls = urls;
this.user = "";
this.ajaxTimeOut = 600; // 600s, 10mins to wait for ajax

// calls
},
method1: function() {

// method code here
}

}

Figure 24. JavaScript classes declarations in Dojo
• Implement the methods required for the VSO to control the DOM nodes.

These methods follow from the user interface models such as boundary
classes and interaction diagrams as shown in Figure 25 and 26 below. For
the StaffView widget a boundary class diagram and an interaction
diagram were developed to model the functionality of the ViewStaff
JavaScript widget.

Figure 25. Boundary class diagram for ViewStaff widget

80

Figure 26. Sequence diagram for the ViewStaff widget

The client side Model (Data)

On the server side the domain model contains the business objects these are
then transferred as data to the client side in JSON format. These objects will then
be built into client side JavaScript objects as shown above using the ‘eval’
function. This way the model on the client side will reflect the objects on the
server side and there is no need to create class definition for the model on the
client side as this is done dynamically during the running of the application.

An example to demonstrate this is the sequence diagram shown Figure 24
above, the server side object StaffMemberWrapper is serialized into JSON
format and delivered to the client side; consequently the same object graph will
also exist on the client side. The main advantage of this approach is the fact that
there is no need to maintain two set of class definitions for StattMember on the
client and server side, as the server side definition can be used in both layers.

The client side Controller

The controller (Figure 21) orchestrates the view, the model and facilitates
communications with the server to retrieve and save data using AJAX. The
controller does the following:

• Holds reference to and controls all the JavaScript widgets.

• Queries data from the server using AJAX and reconstructs the response
into JavaScript model objects.

• Saves data to the server from the updated model.

81

• Enforces security and authorisation on the client side. The same
enforcements are done on the server side to ensure no JavaScript
tampering was done.

6.5 Overall System

Figure 27. OfficeMA candidate technologies. Adapted from Richardson [30].

82

Figure 27 above provides an overview of the initial candidate technologies for the
Office Management Application and the tier on which they are used. The specific
versions used in for the project are summarised in Appendix I. As explained
before one of the objectives of the project is to use lightweight Open Source
frameworks to add transaction, security and persistence to the application
domain model developed using the USDP.

7 Detailed Software Design

The detailed software design followed from the analysis classes by elaborating
on the class associations and their multiplicity. Detailed design was also
concerned with the specification of the attribute types, how operations function
and how objects interact with each other. Other aspects such as object visibility,
the use of Interfaces and the use of Design Patterns were also applied. Other
areas that were considered during the detailed design are:

• User interface

• Data management

The detailed design was carried out taking into consideration the following
candidate technologies chosen for the implementation:

• Java 5 is used to implement the application logic. Other widely used Java
frameworks were used such as Hibernate, Struts and Spring. Unit testing
was implemented using the JUnit framework.

• DHTML, JavaScript, CSS and the Dojo toolkit is used to implement the
user interface.

• PostgreSQL is used to implement the database layer.

83

7.1 Detailed Class Design and Implementation

The source code developed as part of the detailed design and implementation is
included the CD-ROM attached with this dissertation as summarised in Appendix
H. The Java packages structure for the source code is shown in Figure 28 below.

Figure 28. Package structure for OfficeMA detailed classes

7.1.1 Design and architectural patterns

Detailed class design was based on the POJO architectural pattern as explained
in subsection (6.3) and the use of the Data Access Object (DAO) design pattern
[30]. The advantage of using the DAO pattern was to isolate the business logic
from the details of the persistence layer implementation.

The class diagram below shows the DAO pattern and how the various classes
interact to provide the necessary persistence isolation. In regards to this project
the following terms were used to refer to the classes in the DAO pattern:

• Service – Represent the business object that carries out some business
logic. The Service also represents a Control class in the USDP, so for
each package a Service class was used to support the use cases in that
package. (5.3).

• Repository – Represent the DataAccessObject used to isolate the
Service from the implementation details of the persistence layer.

• EntityManger – is the persistence manager for the Java Persistence API
specification (javax.persistence.EntityManager) [51]. This is declared and
annotated using the @PersistenceContext (javax.persistence.
PersistenceContext), but not instantiated in the DAO as it is injected by the
Spring framework as a result of the declared annotation. The
EntityManager class provide methods to perform CRUD operations on
entities and can also be used to execute SQL queries, which can be in
native SQL or JPA query language [50].

84

• Model – Represent the TransferObject or the entity being retrieved or
persisted. As discussed in subsection (6.3.4) the entity classes are
annotated with JPA mappings to map them to the physical database
schema.

Figure 29. Data Access Object Class Diagram [30].

Below the detailed design for each of the packages in the Office Management
Application is considered. A service class was used in each package to support
the use case. Repositories were implemented for each class that required
persistence and is the main focus of the use case logic. Classes that are
persisted as part of these main classes will not have their own repositories as
they automatically persisted as part of the object graph for main entities.

7.1.2 Enumerated types

One of the new features in Java 5 the enumerated type [35] was used in the
OfficeMA implementation. Most of the classes that are of type Enum ended with
the word Type, such as ExpensesStatusType, HolidayStatusTypes, etc….
Enumerated types are shown in the detailed class diagram as having “enum”
stereotype. Enumerations in Java have many advantages such as having a
name and an ordinal similar to the C++ counterpart, however the Java
enumeration are far powerful and can have static methods and can also be used
in switch statements as shown for Enum OperationType implemented as part of
the staff management module:

public boolean isOperationPermitted(OperationType operation) {
boolean permitted = false;
switch (operation) {
case VIEW_PARTIAL_STAFF_DETAILS:
case UPDATE_OWN_DETAILS:

85

case UPDATE_PARTIAL_STAFF_DETAILS:
case VIEW_OWN_DETAILS:
case VIEW_OTHERS_DETAILS:

permitted = true;
break;

}
return permitted;

}

7.1.3 Dependency Injection using Spring

As discussed in subsection (6.3.2) the Spring framework was used as a container
for the OfficeMA classes, one of the features discussed was the DI used to
provide objects with their dependencies at runtime. This feature is in fact just a
drop in the ocean compared to the overall features and capabilities offered by the
Spring framework. Without using DI, a great deal of boilerplate code would be
needed to instantiate objects at runtime. The code would have also been tightly
coupled because classes need a concrete class to instantiate which renders the
use of interfaces pointless in this case.
The Spring configurations, termed bean configurations are declared in the file
“/OfficeMA/WebContent/WEB-INF/applicationContext.xml”. This file includes the
declaration of all the beans (classes) that Spring is going to create at runtime and
also their wiring configurations. Most importantly the data source configurations
such as the database server type, hostname, username, password and
connection pooling are all configured in this file. Figures 30 below shows the
beans configurations for OfficeMA classes.

Figure 30. Spring beans schematic for OfficeMA classes

86

7.1.4 The use of Exceptions

Exceptional conditions in the OfficeMA code were handled using Java
Exceptions. Exceptions were thrown in the code to disrupt the normal program
flow and to indicate to the caller that an error or some unexpected condition or
state has occurred. The business logic layer was programmed so that calling
method incorrectly will result in an unchecked runtime exception to be thrown
such java.lang.IllegalArgumentException, this happens when the developer of
the calling code invoke the business layer methods with invalid parameters.
Other validation exceptions such as exceptional condition that might happen at
runtime as a result of invalid data or state are thrown as checked exceptions so
that the caller can handle these and take the appropriate action accordingly.

Implementation details
The application Exception classes were implemented using the following classes
including fully qualified package names:

• com.officema.exceptions.AccountLockedException.java
• com.officema.exceptions.DetailsRetrieveUpdateException.java
• com.officema.exceptions.InvalidPasswordException.java
• com.officema.exceptions.InvalidUsernameException.java
• com.officema.exceptions.PermissionException.java
• com.officema.exceptions.ValidationException.java

7.1.5 Generics and Parameterized Classes

A generic repository (DAO) super class and interface were used to provide
generic functionally for CRUD (Create, Read, Update and Delete) operations for
the domain model entities (Figure 31). The super class uses the new Java 5
Generic feature [45], which is similar to the C++ templates, and offers better
readability and compile-time type checking for Collection classes.

For example in the case below Generics made it possible to create a super class
and an interface that can used to retrieve an unknown entity type. This was not
possible to achieve without Generics as the user has to either type cast entities
or get all entities to implement the same Interface or super class or write multiple
super classes, one for each repository. “Generics are implemented by type
erasure: generic type information is present only at compile time, after which it is
erased by the compiler” [6].

As seen below the Generic Java concept is modelled as class parameters in
UML. The OMG UML specification [69] states:

87

"A template is a parameterized element that can be used to generate other
model elements using TemplateBinding relationships. The template parameters
for the template signature specify the formal parameters that will be substituted
by actual parameters (or the default) in a binding. "

Figure 31. Generic repository super class and interface for CRUD operation

Implementation details
The generic repository classes were implemented using the following classes
including fully qualified package names:

• com.officema.persistence.dao.GenericRepository.java
• com.officema.persistence.dao.GenericRepositoryImpl.java

7.2 Application Packages

The detailed class design and the implementation for the following application
packages are outlines below. These packages include:

• Company package

• Expenses package

• Holidays package

• Staff package

• System Settings package

• Task package

88

7.2.1 Company package:

The Company package contains classes such as WorkStream, Project and
Grade. These classes were put on a separate package as they belong to the
whole company and might be used in other packages. The class diagram below
(Figures 32, 33) outlines the detailed classes for the Company package and
contains two repositories as follows:

• WorkStreamRepositoryImpl – responsible for saving and retrieving
WorkStream and Project from the database.

• GradeRepositoryImpl – responsible for saving and retrieving Grade from
the database

Project class does not have its own repository as it is retrieved from the database
as part of the WorkStream. This is shown in the class diagram using the
composition association to indicate that Projects are part of WorkStreams and
can not exist in isolation.

Implementation Details
The Company package classes were implemented using the following classes
including fully qualified package names:

• com.officema.model.company.Project.java
• com.officema.model.company.WorkStream.java
• com.officema.persistence.dao.jpa.GradeRepositoryImpl.java
• com.officema.persistence.dao.jpa.WorkStreamRepositoryImpl.java
• com.officema.persistence.dao.GradeRepository.java
• com.officema.persistence.dao.WorkStreamRepository.java

89

Figure 32. WorkStream, Project and repository classes

Figure 33. Grade and GradeRepository classes

90

7.2.2 Expenses package:

The Expenses package contains classes such as Expenses, ExpensesCategory,
ExpensesItem, ExpensesMnemonic, ExpensesStatus, ExpensesStatusType and
MileageCost. As the expenses transition between a number of states, this
transition was modelled using a state diagram which is included in Appendix D
and was explained in details in the user guide for the application included in
Appendix H. The class diagram below outline the detailed classes for the
Expenses package and contains two repositories and a service as follows:

• ExpensesCategoryRepositoryImpl – responsible for saving and retrieving
Expenses, ExpensesItem and ExpensesStatus from database.

• ExpensesCategoryRepositoryImpl – responsible for saving and retrieving
ExpensesCategory from the database

Although the Expenses class depends completely on the StaffMember class as
indicated by the composition association in the class diagram below, it is
retrieved separately using the ExpensesRepository. This is achieved by including
the reference to the StaffMember in the Expenses object instead of referencing a
collection of Expenses from the StaffMember object.

The advantage of this strategy is that when loading the StaffMember object in
staff management functions the expenses for the staff member are not relevant
and are not loaded from the database to increase performance. Only when
expenses are loaded then the staff member instance for these expenses will be
loaded as well. To achieve this a @ManyToOne JPA annotation was used in the
Expenses class to reference the StaffMember instance.

Expenses management service
The ExpensesManagementServiceImpl class provides an implementation of all
the business logic that is required to satisfy the various expenses management
use cases through the methods shown in Figure 35. The service also provides
the interface ExpensesManagementService for clients use to hide the
implementation. The service class makes use of other repositories and services
such as the ExpensesRepository, ExpensesCategoryRepository and the
TaskManagementService to retrieve and update expenses related entities. These
private instance variables are not instantiated by the service instead these are
injected using the Spring framework at runtime using Dependency Injection
(Figure 33).

91

Figure 34. Spring beans schematic for ExpensesManagementServiceImpl

Figure 35. Methods defined by the ExpensesManagementServiceImpl

Implementation Details
The Expenses package classes were implemented using the following classes
including fully qualified package names:

• com.officema.model.expenses.types.ExpensesStatusType.java
• com.officema.model.expenses.Expenses.java

92

• com.officema.model.expenses.ExpensesCategory.java
• com.officema.model.expenses.ExpensesItem.java
• com.officema.model.expenses.ExpensesMnemonic.java
• com.officema.model.expenses.ExpensesStatus.java
• com.officema.model.expenses.MileageCost.java
• com.officema.persistence.dao.jpa.ExpensesCategoryRepositoryImpl.java
• com.officema.persistence.dao.jpa.ExpensesRepositoryImpl.java
• com.officema.persistence.dao.ExpensesCategoryRepository.java
• com.officema.persistence.dao.ExpensesRepository.java
• com.officema.services.expenses.ExpensesManagementService.java
• com.officema.services.expenses.ExpensesManagementServiceImpl.java

93

Figure 36. Expenses classes and dependencies (Generic repository classes
omitted for clarity)

94

7.2.3 Holiday package:

The Holiday package contains classes such as Holiday, HolidayYear and
HolidayStatusType. The class diagram below outline the detailed classes for the
Holidays package and contains a repositories and a service as follows:

• HolidaysRepositoryImpl – responsible for saving and retrieving Holiday,
HolidayYear and HolidayStatusType from database.

As mentioned above for Expenses class the same applies to the HolidayYear
class in the fact that it depends on the StaffMember class as indicated by the
composition association in the class diagram below, but it is retrieved separately
using the HolidaysRepository. This was achieved by including the reference to
the StaffMember in the HolidaysYear object instead of referencing a collection of
HolidaysYear from the StaffMember object.

Holiday management service
The HolidaysManagementServiceImpl class provides an implementation of all the
business logic that was required to satisfy the various holidays management use
cases through the methods shown below in Figure 38. The service also provides
the interface HolidaysManagementService for clients use to hide the
implementation. The service class makes use of other repositories and services
such as the HolidaysRepository and the TaskManagementService to retrieve and
update holidays related entities. These private instance variables are not
instantiated by the service instead these are injected using the Spring framework
at runtime using Dependency Injection (Figure 37).

Figure 37. Spring beans schematic for HolidaysManagementServiceImpl

95

Figure 38. Methods defined by the HolidaysManagementServiceImpl

Implementation Details
The Holidays package classes were implemented using the following classes
including fully qualified package names:

• com.officema.model.holidays.types.HolidayStatusType.java
• com.officema.model.holidays.Holiday.java
• com.officema.model.holidays.HolidayYear.java

• com.officema.persistence.dao.jpa.HolidaysRepositoryImpl.java
• com.officema.persistence.dao.HolidaysRepository.java

• com.officema.services.holidays.HolidaysManagementService.java
• com.officema.services.holidays.HolidaysManagementServiceImpl.java

96

Figure 39. Holidays classes and dependencies (Generic repository classes
omitted for clarity)

97

7.2.4 Staff package:

The Staff package is the largest and the most important package in the
application. The package is centric around the StaffMember class, but also
include other entity classes such as Grade, Accountant, Administrator,
GenericRole, RegularStaff, Role, EmploymentType, Gender,
OperationType, Responsibility, ResponsibilityType, RoleType, Title, Address,
BankAccount, EmploymentDetails, StaffMember, User. The class diagram in
Figure 38 outlines the detailed classes for the Staff package and contains a
number of repositories and a service as follows:

• StaffMemberRepositoryImpl – responsible for saving and retrieving
Address, BankAccount, EmploymentDetails, StaffMember from database.

• RoleRepositoryImpl – responsible for saving and retrieving GenericRole
subclasses Accountant, Administrator, RegularStaff.

Staff members’ roles
Roles the staff package is modelled using a number of objects as shown in the
diagram below. The staff roles are defined using an interface (Role) that clients
can reference, then a generic abstract super class is defined (GenericRole), this
class defines all the common functionality required by the various roles. Three
subclasses are defined to inherit form the GenericRole super class, these are:
Administrator, Accountant and ReguarlStaff. The role class define the same
methods signature, but each class implements these methods differently
depending on what each role can do.

This role hierarchy was modelled in the conceptual database design using the
enhance ER entity subtypes feature [8]. When mapping these to the database a
single table for the GenericRole class hierarchy was used. As Baur and King [2]
have outlined that this mapping strategy is the winner in terms of simplicity and
performance, and the fact that all the classes contain the same attribute there will
not be a problem with some columns holding null for the attributes of a specific
role class. The concrete class represented by a particular row is identified by a
discriminator column [2] using the JPA annotation in the code snippet below:

@Entity
@Table(name = "Roles")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(

name="role_type",
discriminatorType=DiscriminatorType.STRING

)
public abstract class GenericRole implements Role, Serializable {

98

Figure 40. Role classes and dependencies (Generic repository classes omitted
for clarity)

Staff management service
The StaffManagementServiceImpl class provides an implementation of all the
business logic that is required to satisfy the various staff management use cases
through the methods shown below in Figure 42. The service also provides the
interface StaffManagementService for clients use to hide the implementation.
The service class makes use of other repositories such as the
WorkStreamRepository, RoleRepository, GradeRepository and
StaffMemberRepository to retrieve and update staff related entities. These
private instance variables are not instantiated by the service instead these are

99

injected using the Spring framework at runtime using Dependency Injection
(Figure 41).

Figure 41. Spring beans schematic for StaffManagementServiceImpl

Figure 42. Methods defined by the StaffManagementServiceImpl

Create staff sequence diagram

Figure 43 below show the sequence diagram for the createStaffMember method

100

Figure 43. Sequence diagram for the createStaffMember

101

Authenticate staff sequence diagram
One of the methods implemented by the StaffManagementServiceImpl is the
authenticate method used to authenticate and retrieve the staff member details
when they login to the application. The method takes a username and password
and tries to retrieve a staff member details from the database that match the
supplied details and various exceptions are thrown if a staff member matching
the details is not found or if the staff member’s account is locked. The method is
also responsible for calling the User.authenticate method which will check the
input password against the user’s stored password and lock the account if the
maximum invalid login attempts are exceeded.

In the context of a web application, the authenticate method alone is not enough
because the web application need to remember that the user has authenticate for
as long as they are using the application. This is achieved through the use of
sessions provided by the Java javax.servlet.http.HttpSession, which can be used
to store any objects. In this case when the user is authenticated then their
StaffMember object will be stored in the session and used as an indication that
this user has already logged into the application (as will be explained in the
presentation layer section below), and these details stays in the session until the
user logout or their session expires.

Figure 44. Sequence diagram for the authenticate

102

Implementation Details
The Staff package classes were implemented using the following classes
including fully qualified package names:

• com.officema.model.staff.grades.Grade.java
• com.officema.model.staff.roles.Accountant.java
• com.officema.model.staff.roles.Administrator.java
• com.officema.model.staff.roles.GenericRole.java
• com.officema.model.staff.roles.RegularStaff.java
• com.officema.model.staff.roles.Role.java
• com.officema.model.staff.types.EmploymentType.java
• com.officema.model.staff.types.Gender.java
• com.officema.model.staff.types.OperationType.java
• com.officema.model.staff.types.Responsibility.java
• com.officema.model.staff.types.ResponsibilityType.java
• com.officema.model.staff.types.RoleType.java
• com.officema.model.staff.types.Title.java
• com.officema.model.staff.Address.java
• com.officema.model.staff.BankAccount.java
• com.officema.model.staff.EmploymentDetails.java
• com.officema.model.staff.StaffMember.java
• com.officema.model.staff.User.java

• com.officema.persistence.dao.jpa.GradeRepositoryImpl.java
• com.officema.persistence.dao.jpa.RoleRepositoryImpl.java
• com.officema.persistence.dao.jpa.StaffMemberRepositoryImpl.java
• com.officema.persistence.dao.GradeRepository.java
• com.officema.persistence.dao.RoleRepository.java
• com.officema.persistence.dao.StaffMemberRepository.java

• com.officema.services.staff.StaffManagementService.java
• com.officema.services.staff.StaffManagementServiceImpl.java

103

Figure 45. Staff classes and dependencies (Generic repository classes omitted
for clarity)

104

7.2.5 Task package:

The Task package contains classes such as Task and TaskType. The class
diagram below outline the detailed classes for the Task package and contains a
repositories and a service as follows:

• TaskRepositoryImpl – responsible for saving and retrieving the Task entity
from database.

The Task class references an instance of StaffMember the same approach that
was used above for Expenses and HolidayYear classes. The class also contains
a ManyToOne annotation on the StaffMember instance variable. The Task class
is dependent on the StaffMember class as depicted by the class diagram below
through the composition association. The types of tasks and their messages
were implemented using a Java Enum in the TaskType class. The class
demonstrates the strengths of Java Enum by providing a constructor method that
was used to read a custom message for each TaskType from a file
“MessageResource.properties” so that changes to message can be done without
changing the code itself as shown in the code snippet below:

private TaskType(String messageKey, String taskName) {
Properties defaultProps = new Properties();
try {

defaultProps.load(TaskType.class.
getResourceAsStream("MessageResource.properties"));

} catch(IOException ioe) {
log.error("Failed to load properties in” +

“ TaskType constructor", ioe);
}
this.taskMessage = defaultProps.getProperty(messageKey);
this.taskName = taskName;

}

Task management service
The TaskManagementServiceImpl class provide an implementation of all the
business logic that was required to satisfy the various task management use
cases through the methods shown below in Figure 47. The service also provides
the interface TaskManagementService for clients use to hide the implementation.
The service class makes use of TaskRepository to retrieve and update tasks
related entities. This private instance variable is injected using the Spring
framework at runtime using Dependency Injection (Figure 46).

105

Figure 46. Spring beans schematic for TaskManagementServiceImpl

Figure 47. Methods defined by the TaskManagementServiceImpl

Implementation Details
The Task package classes were implemented using the following classes
including fully qualified package names:

• com.officema.model.tasks.types.TaskType.java

• com.officema.persistence.dao.jpa.TaskRepositoryImpl.java
• com.officema.persistence.dao.TaskRepository.java

• com.officema.services.tasks.TaskManagementService.java
• com.officema.services.tasks.TaskManagementServiceImpl.java

106

Figure 48. Task classes and dependencies

7.2.6 Testing the domain model

As outlined in subsection (6.3.6) unit testing was done using the JUnit framework
to test the business logic and the domain model. The approach used was to test
a service class as soon as it was completed in an attempt to phase out any
issues or bugs; this ensured that the unit being tested worked successfully as a
unit and as part of the whole model. The test classes were implemented in the
“/OfficeMA/test” folder.

107

7.3 User Interface Design and Implementation

The user interface was implemented in two parts, the presentation logic layer
which consists of a number of action classes and the user interface which
comprises JavaScript, cascaded style sheets, HTML and images.

Figure 49. Struts 2 request flow [44].

As explained in subsection (6.4.1) Struts 2 framework was used to implement the
presentation logic layer. The presentation classes were implemented in the
com.officema.presentation package. For the purpose of this application a
number of Action classes were created as highlighted in yellow in Figure 47
above. The file struts.xml holds the entire configuration for the Action classes and
the type of their results (highlighted in blue). An Interceptor class
(com.officema.presentation.interceptors.AuthenticationInterceptor.java) was also
created to validate the user’s session upon each HTTP request to check that the
user has authenticated, if not then it redirects the user to the login page.

108

7.3.1 Application action classes

An action class is simply a Java class that has a method named execute, which
Struts 2 invokes automatically at runtime. The user can also declare any other
method and tell Struts to call it by declaring this in the struts.xml files as shown in
the snippet below:

<action name="queryAllStaff" method="queryAll"
class="queryStaffAction">

 <result type="json">
 <param name="excludeProperties">staffMember,

staffed
</param>

 </result>
</action>

The snippet shows the mapping for one of the action classes used to query all
the staff details as the name imply, also the method name that will be invoked by
Struts is declared as “queryAll”. The results for the action class on the other hand
are declared to be of type “json”, this will automatically serialize the Java objects
on the HTTP response scope (called the value stack) into JSON strings using the
JSON plug-in [62]. The user can also exclude a number of objects in the value
stack from being serialized using the “excludeProperties”. The Struts result could
also be a Java Server Page (JSP), a static HTML page or another action class to
chain actions together.

Figure 50. Package structure for presentation layer

109

Figure 50 above shows the various source files for the presentation logic layer,
below is an explanation of the various packages and their significance. Each
package also contains the relevant validation definition XML files:

• com.officema.presentation package – this package contains the
OfficeMaActionSupport super class that all the action classes inherit. This
class defines the common functionality required by the application action
classes such as the ResultStatus class required by the user interface.

• Authentication package – contains the action classes concerned with
logging in and out of the application. The classes in this package make
use of the StaffManagementService class to authenticate the users to the
application.

• Desktop package – contains the action classes that are concerned with
displaying the application desktop such as the
com.officema.presentation.actions.desktop.DesktopLauncherAction.java
class. This class declares its result in struts.xml as the main JSP for the
application that contains the entire HTML required to build the user
interface on the client side.

• Entities package – contains user interface model and wrapper classes
that wrap the domain model object to either restrict or mutate their
properties.

• Expenses package – contains the action classes that deal with the
expenses functionality and the various requests from the user interface. All
the results of the action classes of this package are declared as “json”
type. The classes in this package make use of the
ExpensesManagementService class to retrieve and update expenses.

• Holiday package – contains the action classes that deal with the holiday
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the HolidaysManagementService
class to retrieve and update holidays.

• Staff package – contains the action classes that deal with the staff
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the StaffManagementService
class to retrieve and update staff details.

• Settings package – contains the action classes that deal with updating
instances such WorkStream, Project, Grade, ExpensesCategory and
Roles. All the results of the action classes of this package are declared as
“json” type. The classes in this package make use of the
SystemSettingsService class to retrieve and update these details.

110

• Task package – contains the action classes that deal with the task
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the TaskManagementService
class to retrieve and update tasks.

Implementation Details

Java classes:

• com.officema.presentation.actions.authentication.LoginAction.java
• com.officema.presentation.actions.authentication.LogoutAction.java
• com.officema.presentation.actions.desktop.DesktopLauncherAction.java
• com.officema.presentation.actions.entities.wrappers.EmploymentDetailsW

rapper.java
• com.officema.presentation.actions.entities.wrappers.StaffMemberWrapper.

java
• com.officema.presentation.actions.entities.wrappers.UserWrapper.java
• com.officema.presentation.actions.entities.CurrentUser.java
• com.officema.presentation.actions.entities.ResultStatus.java
• com.officema.presentation.actions.entities.StaffDetails.java
• com.officema.presentation.actions.entities.StatusType.java
• com.officema.presentation.actions.expenses.ExpensesQueryAction.java
• com.officema.presentation.actions.expenses.ExpensesUpdateAction.java
• com.officema.presentation.actions.holidays.HolidaysQueryAction.java
• com.officema.presentation.actions.holidays.HolidaysUpdateAction.java
• com.officema.presentation.actions.settings.SystemSettingsQueryAction.ja

va
• com.officema.presentation.actions.settings.SystemSettingsUpdateAction.j

ava
• com.officema.presentation.actions.staff.FormStaticDataSupport.java
• com.officema.presentation.actions.staff.QueryStaffAction.java
• com.officema.presentation.actions.staff.StaffMemberAction.java
• com.officema.presentation.actions.staff.UpdateStaffAction.java
• com.officema.presentation.actions.task.TaskManagementAction.java
• com.officema.presentation.actions.Constants.java
• com.officema.presentation.actions.OfficeMaActionSupport.java
• com.officema.presentation.interceptors.AuthenticationInterceptor.java

Other configuration files:

• /OfficeMA/src/struts.xml
• /OfficeMA/src/struts-officema-desktop.xml

111

• /OfficeMA/src/com/officema/presentation/actions/OfficeMaActionSupport.p
roperties

• /OfficeMA/src/com/officema/presentation/actions/staff/StaffMemberAction-
save-validation.xml

• /OfficeMA/src/com/officema/presentation/actions/staff/QueryStaffAction-
query-validation.xml

• /OfficeMA/src/com/officema/presentation/actions/staff/package.properties
• /OfficeMA/src/com/officema/presentation/actions/authentication/LoginActio

n-validation.xml
• /OfficeMA/src/com/officema/presentation/actions/settings/package.properti

es

7.3.2 User Interface Design

The user interface for the application was implemented by following the design
rules identified in subsection (2.6.3). The user interface has adhered to these
rules as summarised below. The description of the various windows in the
application and their functionality and purpose is described in more details in the
user guides developed as part of this project (Appendix H).

Simplicity and Structure

As mentioned before in subsection (2.4.2) the user interface followed an MDI
approach (Figure 51) similar to the one used in developing traditional desktop
applications. For this approach to work the browser’s conventional functions are
hidden and the application is loaded on a full browser window to maximize the
space used for the application. The browser right click menu was also replaced
by a custom menu for the application as the browser functionality such as refresh
or back is not relevant in this case. The application desktop source files are listed
below, these use the JSP technology:

• /OfficeMA/WebContent/WEB-INF/jsp/bodyContents.jsp
• /OfficeMA/WebContent/WEB-INF/bodyContents.jsp
• /OfficeMA/WebContent/WEB-INF/loader.jsp
• /OfficeMA/WebContent/WEB-INF/menuAndToolbar.jsp
• /OfficeMA/WebContent/WEB-INF/menusDefinitions.jsp
• /OfficeMA/WebContent/WEB-INF/officema.jsp
• /OfficeMA/WebContent/WEB-INF/postLogin.jsp

112

Figure 51. Office Management Application desktop

Visibility, Affordance and Consistency

The interaction styles used for the user interface were summarised in subsection
(2.4.1), out of these styles the menu selection has been identified as the main
form of interaction in the application. This is achieved by choosing options from
the top menu bar. A toolbar is also provided for frequently used options, and as
the user hovers on top of any of the toolbar icons a tool-tip is displayed
summarising the purpose of the icon. Using this approach which is consistent
with Windows applications enables the user to easily figure out how to use the
controls to access the various features in the application.

Figure 52. OfficeMA menus and toolbar

The visual design for the project tried to follow some of the good user interface
practices outlined in the Window Vista user experience guide from Microsoft [71]
such as:

113

• The use of common controls and common dialogs

• The use of standard window frame.

• Using icons and graphics consistently

• Using task dialogue for various messages and apply a suitable icon to
indicate the current situation (Figure 54)

Feedback

Other features include the use of a busy logo whilst using AJAX to retrieve data
from the server (Figure 53). As the AJAX call is Asynchronous and the response
is returned by the Dojo toolkit using a call-back function; depending on the delay
it takes for the server to response the application shows a modal icon which
indicate to the user that the application is currently loading some data. This is
important from a usability point of view so that the user is aware of the current
state of the application. A timeout is also set to check if the server does not
response within a configurable timeframe to display an error message to the
user.

The application also makes use of information, warning and error dialogues
boxes (Figure 54) to convey the status of the application to the user.

Figure 53. An animated image to indicate the application is loading data

Figure 54. Message dialogues in the OfficeMA

114

Figure 55. Add staff window.

Tolerance

The user interface was designed to minimize users from making errors by
performing interactive validation to user’s input which indicates to the user
immediately if they provided an invalid value for an input. An example is the
shown in Figure 55 in the Add staff window where mandatory fields are marked
on the window with an asterisk and a message indicating the value is required or
invalid.

Closure

Dialogue boxes and windows such as the Add staff window shown in Figure 55
are designed in a way it is clear to the user which dialogue is used for viewing or
updating information. In this case the window has two buttons one to save and
another to cancel. It is also made clear when input is required by the user and
when the action has been completed successfully. Feedback is given to the user
after the user submits their updates and the current data in the application is
refreshed accordingly.

115

Performance and Data Refresh

Performance in the application user interface is very much dependent on the
browser used, some browsers such as Firefox offer high performance compared
to others such as Internet Explorer. However, the user interface implemented
followed some of the best practices for efficient HTML manipulation such as the
use of JavaScript innerHTML function to append HTML elements to a DOM node
instead of using the createElement function which is slower. The user interface
performance is also dependent on the server’s performance when retrieving and
saving data, for this purpose many techniques were applied in the server to
enhance the performance of the application as discussed in subsection (7.5).

In regards to data refresh the application provides the ability for the user to
refresh the data where possible for example by providing a refresh button (Figure
56 below). The application also provides automated data refresh whenever a
window is opened or shown. This ensures that the data in the user interface is
not stale and is kept in synchronisation with the server data.

Figure 56. Find staff window.

7.3.3 User interface controller

The controller for the user interface was developed using the approach
developed in subsection (6.4.2). The controller contains the code required to
invoke AJAX call and their call-back function, this approach provide a central

116

location to parse the server’s response, check for errors and notify the user and
UI widgets that an error has occurred. Figure 57 below shows the class diagram
for the client side controller implemented in JavaScript and used the dojo.Declare
notation. The controller was implemented in the “/OfficeMA/WebContent/scripts/
officema_controller.js” JavaScript file.

Figure 57. Class diagram for the client side JavaScript controller

7.3.4 User interface modelling

For each of the prototypes developed during the analysis class diagrams
(Appendix D), the boundary classes and interaction diagrams were developed to
show the overall interaction between the user and the application. This approach
of modelling the client side classes alongside the server side classes is only
made possible by the fact that the user interface used for the application is object
oriented. Such great modelling flexibility would not be possible when modelling
conventional Web applications that use normal HTML pages for display.

117

Staff management boundary classes

Boundary class diagrams for the staff management VSO were developed as
shown in Figure 58 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

• /OfficeMA/WebContent/officemaWidgets/widget/templates/addStaff.css
• /OfficeMA/WebContent/officemaWidgets/widget/templates/addStaff.html
• /OfficeMA/WebContent/officemaWidgets/widget/templates/findStaff.css
• /OfficeMA/WebContent/officemaWidgets/widget/templates/findStaff.html
• /OfficeMA/WebContent/officemaWidgets/widget/templates/ModalAlert.css
• /OfficeMA/WebContent/officemaWidgets/widget/templates/ModalAlert.html
• /OfficeMA/WebContent/officemaWidgets/widget/templates/viewStaff.css
• /OfficeMA/WebContent/officemaWidgets/widget/templates/viewStaff.html
• /OfficeMA/WebContent/officemaWidgets/widget/addStaff.js
• /OfficeMA/WebContent/officemaWidgets/widget/CustomFloatingPane.js
• /OfficeMA/WebContent/officemaWidgets/widget/editStaff.js
• /OfficeMA/WebContent/officemaWidgets/widget/findStaff.js
• /OfficeMA/WebContent/officemaWidgets/widget/ModalAlert.js
• /OfficeMA/WebContent/officemaWidgets/widget/viewStaff.js

Figure 58. Boundary class diagram for staff management VSOs

118

Staff management UI interaction diagrams

The sequence diagrams below show the interaction between the user, the View
Support Objects, the controller and the server. The messages between the client
and the server are shown in the sequence diagram by using Asynchronous AJAX
messages.

Figure 59. Edit staff details sequence diagram

Figure 60. View staff details sequence diagram

119

Figure 61. Add staff details sequence diagram

Figure 62. Find staff sequence diagram

120

Expenses management boundary classes

Boundary class diagrams for the expenses management VSO were developed
as shown in Figure 63 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
EditExpenses.css

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
EditExpenses.html

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
ExpensesDetails.css

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
ExpensesDetails.html

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
ViewExpenses.css

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
ViewExpenses.html

• /OfficeMA/WebContent/officemaWidgets/widget/EditExpenses.js
• /OfficeMA/WebContent/officemaWidgets/widget/ExpensesDetails.js
• /OfficeMA/WebContent/officemaWidgets/widget/ExpensesItemRow.js
• /OfficeMA/WebContent/officemaWidgets/widget/ViewExpenses.js
• /OfficeMA/WebContent/officemaWidgets/widget/Map.js

121

Figure 63. Boundary class diagram for expenses management VSOs

Expenses management UI interaction diagram

The sequence diagrams below show the interaction between the user, the user
interface and the View Support Objects to create a new expenses item.

122

Figure 64. Add new expenses item sequence diagram

123

Task management boundary classes

Boundary class diagrams for the task management VSO were developed as
shown in Figure 65 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

• /OfficeMA/WebContent/officemaWidgets/widget/templates/manageTasks.c
ss

• /OfficeMA/WebContent/officemaWidgets/widget/templates/
manageTasks.html

• /OfficeMA/WebContent/officemaWidgets/widget/ manageTasks.js

Figure 65. Boundary class diagram for task management VSOs

Task management UI interaction diagrams

The sequence diagrams below show the interaction between the user, the View
Support Objects, the controller and the server. The messages between the client
and the server are shown in the sequence diagram by using Asynchronous AJAX
messages.

124

Figure 66. View Tasks sequence diagram

Figure 67. Delete/Update Task sequence diagram

125

7.4 Database Design and Implementation

7.4.1 Establishing requirements

The initial requirements for the database logical model were derived from the
various class models, initially the analysis classes and then the detailed classes.
Entities were derived from the classes with stereotype “entity” in the class
diagram. Association between classes are also translated into relationship
between entities.

7.4.2 Data Analysis

Entity types and relationships

By analysing the analysis class diagram the classes below were identified as
candidate entities for the initial Entity-Relations model:

StaffMember, BankAccount, EmploymentDetails, User, Role, Address, Task,
Grade, WorkStream, Project, Expenses, ExpensesItem,
ExpnesesCategory,MileageCost, ExpensesMnemonic, HolidayYear, Holiday

By further analysing the candidate entities above, it is clear that they can be
classified as strong or weak entity types. Strong entities are not existence-
dependent on some other entity, whilst weak entities are existence-dependent on
some other entity [8].

Strong Entities (parent)
• StaffMember

• Grade

• WorkStream

• ExpensesCategory

• User

• EmploymentDetails

• Role

Weak Entities (child)
• BankAccount – dependent on StaffMember

• Address – dependent on StaffMember

126

• Task – dependent on StaffMember

• Project – dependent on WorkStream

• Expenses – dependent on StaffMember

• ExpensesItem – dependent on Expenses

• MileageCost – dependent on ExpensesCategory

• ExpensesMnemonic – dependent on User

• HolidayYear – dependent on StaffMember

• Holiday – dependent on HolidayYear

• ViewableStaffDetail – dependent on Role

• UpdateableStaffDetails – dependant on Role

• ViewableExpensesStatuses – dependant on Role

It was decided to model some of the candidate entities above as entity types for
many reasons, one of which is the multi-valued attributes such as the
MileageCost. This is done to fulfil the business requirement that mileage should
be paid depending on how many miles the employee has claimed. For example
40pence per mile for less that 10,000 miles and 25pence there after, hence
MileageCost was modelled as a separate entity. Other entities include Address
and BankAccount which belong to StaffMember, but have been modelled as
separate entities to avoid a large StaffMember entity with many attributes.
EmploymentDetails was modelled as a strong entity as it represents the
employment details of the staff member, such as salary, holiday entitlement,
etc…

After completing the data analysis and composing an initial list of entity types and
relationships, the identifiers for these entities were decided. Some of the entities
have natural identifiers that are used by the business, such as employee id,
username, and grade codes. However, for most of the entity types surrogate keys
were used as primary keys and natural identifiers as candidate keys. The
rationale behind this is to avoid using multi-attribute primary keys or natural keys
that might change in the future. Bauer and King [2] have recommend the use of
surrogate to ensure that the primary key is unique, constant, always required,
and never null or unknown, which is sometimes hard to achieve using natural
keys.

Entity subtypes

Inheritance from the UML classes was modelled using entity subtypes
(generalization) in the E-R model. An example is the subclasses of the Role class

127

implemented in the details class model such as Accountant, RegularStaff and
Administrator, these are specialized roles that inherit from Role (Figure 68).

One to one and one to many relationships

One to one relationships were modelled by first deciding on which side will have
an attribute that will be declared as a foreign key, the same attribute was then
declared as an alternate key in the other relation to ensure a one multiplicity
instead of many. One to many follows the same approach, but the foreign key is
not declared as unique to allow for multiplicity.

Many to many Relationships

Many to many relationship in the E-R model, also called intersection relations can
not be represented using the primary key / foreign key mechanism so these were
resolved using a dependant entity between the two entities participating in the
m:n relationship, hence resulting in three entities participating in two 1:n
relationships.

Constraints
Constraints are represented in the E-R models in two ways:

• as a property of a modelling construct

• as a description in the Constraints part of a model

The constraints that were expressed in the conceptual data model are

• Each identifier has a unique value such as staff id

• An entity type participates in a relationship such that an occurrence of the
entity type only participates once (at most) for example one to one
relationship with optional participation.

• An entity type may be shown to participate in a relationship such that each
occurrence of the entity type must participate at least once for example one to
one or one to many mandatory participation.

7.4.3 Entity Relationship Model

Below is the Entity Relations model (Figure 68) developed using the convention
summarised in Table 4. The model comprises an ER diagram, entity types and
constraints.

128

Figure 68. The Office Management Application preliminary E-R diagram

129

Entity Types:

StaffMember (StaffId, DateOfBirth, EmailAddress, FirstName, LastName,
Gender, HomeTelNo, WorkTelNo, NINumber, TaxCode, Title,)

User (UserName, CanApproveExpenses, CanApproveHolidays, Locked,
Password, PersonalPhoto, UnSuccessfulLoginAttempts)

Role (RoleId, RoleType)
ViewableStaffDetails (RoleId, FieldName)
UpdateableStaffDetails (RoleId, FieldName)
ViewableExpesesStatuses (RoleId, StatusName)
ExpensesMnemonics (Name, Amount, Mileage)
BankAccount (StaffId, AccountNumber, sortCode, BankName)
HomeAddress (StaffId, AddressLine1, AddressLine2, Country, County,

HouseNumber, HouseName, Locality, PostCode, Town)
Task (Id, Completed, DateCreated, Description, TaskType, Title)
EmploymentDetails (Id, DateJoined, DateLeft, EmploymentType,

HolidayEntitlement, Salary)
Grade (Id, Code, MaximumSalary, MinimumSalary, Name)
EmploymentWorkStream (EmploymentDetailsId, WorkStreamId)
WorkStream (Id, Description, Name)
Project (Id, Code, Description, Name)
HolidayYear (Id, CarryOver, DaysInLieu, Entitlement, HolidayYear)
Holiday (Id, AfterNoon, BookedDate, FromYear, FullDay, Status)
Expenses (Id, DatePaid, StatusLastModified, Status, ExpensesMonth,

ExpensesWeek, ExpensesYear)
ExpensesItem (Id, Amount, Description, ExpenseDate, Miles, Mnemonic,

Rejected, RejectionReason)
ExpensesCategory (Id, Category, HasMileage)
MileageCost (Id, Cost, LowerLimit, UpperLimit)

Constraints
• Each StaffMember participate with the HolidayYear only once for each

value HolidayYear attribute

• Each StaffMember participate with the Expenses entity only once for each
value of ExpensesMonth, ExpensesWeek and ExpensesYear.

130

• Only one Holiday should be booked by any employee for the same day

• Either house name or house number or both should be supplied.

• ExpensesMnemonic must have an amount or mileage or both

7.4.4 Normalisation

As the database design for this project followed a top-down approach through ER
modelling, normalisation was used as a validation technique to check the
structure of relations and ensure that each of these relations were well designed
and meet the data requirements as outlined by Connolly and Begg [8]. All the
relations above were checked and found to be in the Boyce-Codd Normal Form
(BCNF) as explained below:

• 1NF – all the relations above are in this form because all the non-primary
key attributes are functionality dependent on the primary key.

• 2NF – any relation with a single attribute primary key must be in at least
2NF, which applied to all the relations above.

• 3NF – there are no transitive dependencies and hence all relations above
are in 3NF.

• BCNF – all the relations above are in this form as it’s safe to assume that
relations in 3NF are also in BCNF if these relations have [23]:
1. only one candidate key (no alternate keys);

or, if there is more than one candidate key, then
2. the candidate keys are not combinations of attributes;

or, if the candidate keys are combinations of attributes, then
3. the candidate keys do no overlap.

Below are the functional dependencies for each of the relations above. Relations
created to resolve m:n relationships and multi-value attributes have been omitted:

131

StaffMember
Primary key FDs
StaffId → DateOfBirth, EmailAddress, FirstName, LastName, Gender,

HomeTelNo, WorkTelNo, NINumber, TaxCode, Title
Candidate key FDs
NINumber → DateOfBirth, EmailAddress, FirstName, LastName, Gender,

HomeTelNo, WorkTelNo, StaffId, TaxCode, Title

User
UserName → CanApproveExpenses, CanApproveHolidays, Locked, Password,

PersonalPhoto, UnSuccessfulLoginAttempts

Role
Primary key FDs
RoleId → RoleType
Candidate key FDs
RoleType → RoleId

ExpensesMnemonics
Name → Amount, Mileage

BankAccount
StaffId → AccountNumber, sortCode, BankName

HomeAddress
StaffId → AddressLine1, AddressLine2, Country, County, HouseNumber,

HouseName, Locality, PostCode, Town
(Although real addresses are dependent on the postcode as well, we are not
modelling addresses in this project as there is no facility to validate addresses,
and they simply considered an attribute of the staff members, for example if two
members of staff live at the same address the address will be stored in the
database twice, one for each staff member. To model the address as a foreign
key in the staff member relation requires the use of the full postal code database
which is not feasible for this project)

Task
Id → Completed, DateCreated, Description, TaskType, Title

EmploymentDetails
Id → DateJoined, DateLeft, EmploymentType, HolidayEntitlement, Salary

Grade
Primary key FDs
Id → Code, MaximumSalary, MinimumSalary, Name
Candidate key FDs

132

Code → Id, MaximumSalary, MinimumSalary, Name
Name → Id, MaximumSalary, MinimumSalary, Code

WorkStream
Primary key FDs
Id → Description, Name
Candidate key FDs
Name → Description, Name, Id

Project
Primary key FDs
Id → Code, Description, Name
Candidate key FDs
Code → Id, Description, Name
Name → Code, Description, Id

HolidayYear
Id → CarryOver, DaysInLieu, Entitlement, HolidayYear

Holiday
Id → AfterNoon, BookedDate, FromYear, FullDay, Status

Expenses
Id → DatePaid, StatusLastModified, Status, ExpensesMonth, ExpensesWeek,

ExpensesYear
ExpensesItem
Id → Amount, Description, ExpenseDate, Miles, Mnemonic, Rejected,

RejectionReason

ExpensesCategory
Primary key FDs
Id → Category, HasMileage
Candidate key FDs
Category → Id, HasMileage

MileageCost
Id → Cost, LowerLimit, UpperLimit

133

7.4.5 Relational Database Model

The logical database design was carried out using relational modelling. This is a
representation of all the relations and constraint independent of any physical
implementation. A number of domain definitions were used in the relational model
mainly to define custom data for enumerations such as genders, titles, and the
various status types for holidays and expenses. This is similar to the use of Java
Enum for the classes representing these database entities.

Entity subtypes were mapped using a single table per class hierarchy. For
example for the Role entity and its subtypes RegularStaff, Accountant and
Administrator, a Role relation was used with a discriminator column “RoleType”.
RoleType itself was declared as an alternate key to enforce the fact that only one
row should exist for each subtype. The relational database model for application
is included in Appendix E.

7.4.6 Physical Database Model

The physical database (Appendix F) model was implemented using PostgreSQL
relational DBMS for its support to a large part of the SQL standards such as
integrity constraints and domain definitions. This model was designed by the
translation of the logical data model to suit the PostgreSQL DBMS. The steps
followed during the physical database design can be summarised as follows [8]:

• Design base relations

• Design general constraints

• Analyse transactions

• Choose indexes.

Design base relations

For each of the relations in the logical model a table was implemented using the
SQL CREATE TABLE statements. Some of the table were named differently as
the relation name corresponded to a reserved SQL keyword such as relation
Role, for which the tables was named Roles. Other relations such as
ViewableStaffDetails, UpdateableStaffDetails and ViewableStaffDetail were
created as role_view_staff_details, role_update_staff_details and
role_allowed_expenses_statuses respectively to indicate that these are child
tables of the roles table. Mandatory table columns were declared as NOT NULL.
The data types used are described in Table 21 below alongside their Java
counter arts.

134

Table 21 – Data types for the various models
Java type Relational model type Physical model type
String string VARCHAR(255)
Decimal decimal NUMERIC(19, 2)
Integer integer INTEGER
boolean boolean BOOL
Date (date only without
time)

date DATE

Date (with time) timestamp TIMESTAMP
Enum Domain definition Domain definition with

check constraint

A database sequence named the hibernate_sequence was created to support
the automatic generation of surrogate primary keys. The Hibernate ORM uses
this sequence to increment the primary key columns annotated in the Java code
as using the @Id @GeneratedValue annotation.

Designing general constraints

A number of constraints were implemented such as primary keys, foreign key,
unique and check constraints. All the constraints from the logical model were
translated into SQL statements except the constraint that indicate the mandatory
participation on both sides of the relation. These constraints were shown in ER
and logical model to indicate that all the records in both tables should participate
with each other. The problem with this type of constraints arises when inserting
new rows in both tables, the constraint will be violated each time a new row is
inserted. This is because a row entry can not be inserted simultaneously in the
two tables. It has to be inserted in one table then the other table which will violate
the constraint in this case.

These mandatory participation constraints were included in the logical model to
indicate that this is how the data should be stored. For example there must not
be a record in StaffMember that does not have a HomeAddress or BankAccount.
But, it is not possible to enforce this using a Check constraint. This can be
achieved using a stored procedure to insert records on a number of tables at
once. This stored procedure can then be exposed to clients to use to insert data
into the database. In our case the ORM layer manages this by inserting data into
a number of tables as one transaction as explained below.

135

Analyse transactions

To analyse the database transactions we consider the repository classes
discussed in subsection (7.1.1). The following tables have a repository defined in
the Java code and hence are loaded and updated as parent tables:

• Staff_Member

• Roles

• WorkStream

• Grade

• Expenses

• Task

• Holiday_Year

• Expenses_Category.

The ORM layer will load these tables and their child tables using join statements,
and understanding these transactions helps in implementing indexes to improve
performance. Appendix G shows sample queries used by the ORM layer to load
an instance of StaffMember, these join transactions for StaffMember class are
summarised below in the format “Main table → Joined tables” (Joined tables will
also join with their child tables):

Staff_Member → Home_Adress, Bank_Account

Employement_Details → Grade, Employment_WorkStream, WorkStream,
Project, Staff_Member (for line manager object)

Users → Role, Expenses_Mnemonics, Staff_Member (for expenses approver),
Staff_Member (for holiday approver)

Choosing indexes

The PostgreSQL DBMS supports a number of index types, one of which is the B-
tree index created by default for primary key and unique constraints (alternate
keys). The B-tree index is sufficient for the performance required by the
application as most queries are simple queries selecting from tables by primary
or alternate keys.

136

7.5 Caching, Pooling and Transactions Support

7.5.1 Caching

To improve the performance of the web application data caching was used. The
data caching was implemented using EHCache [44], a general purpose caching
framework. The cache used for the application is a simple in memory cache that
only expires when an object is updated. The cache was defined on the methods
in the repository classes that retrieve the objects. Whenever an object is
requested it is checked in the cache first using its object id and if it is not found it
will then be loaded from the database and cached. For this reason all the entity
classes in the application implement the Serializable Java interface to indicate
that they can be serialized to and from the cache. The cache is flushed whenever
an instance is deleted or updated. Caching is configured in the following two files:

• /OfficeMA/WebContent/WEB-INF/ehcache.xml
• /OfficeMA/WebContent/WEB-INF/applicationContext.xml

Figure 69. EHCache configurations

7.5.2 Connection Pooling

Connection pooling was also used to improve performance and cache a number
of database connections initially set to 5. The connection pooling saves the time
required by the application to create, establish, and then close down a
connection each time a request is made to access the database. The DBCP
connection pooling component from the Jakarta project [49] was used. The
connection pooling was managed by the Spring framework, however this can
also be implemented to be managed by the Tomcat container. Pooling is
configured in the following file:

• /OfficeMA/WebContent/WEB-INF/applicationContext.xml

137

Figure 70. DBCP connection pooling configurations

7.5.3 Transactions

Database transactional support is by all means the most important factor in
ensuring the data integrity. The PostgreSQL database is fully ACID compliant,
however the application needs to manage the application level transactions and
decide when to commit or rollback a transaction. The OfficeMA transactional
requirement is to be able to save or persist an object graph into the database, for
example a StaffMember instance with associated objects. This operation will
update a number of tables and needs to be treated as a single transaction, and in
case any update fails the whole operation will need to be rolled back.

The Spring container was used as a transactional framework by declaring all the
repository classes as transactional using the Spring @Transactional annotation
[61]. This ensures that all the methods in the repository class are executed as
transactions that will be committed only if no exceptions such as
RuntimeException occurred.

138

7.6 Security

Security is one of the big factors affecting the decision to implement a Rich
Internet Applications. RIA have many advantages in regards to usability, flexibility,
better user interaction and experience, but this comes at a price. By developing a
RIA and following an MVC pattern on the client side a great deal of application
logic is exposed on the client side in the form of JavaScript code. Some of the
risks facing such applications and a way to mitigate this risk are discussed below.
Having said this, each RIA should be assessed in terms of requirements and if
the advantages of using a RIA outweigh the disadvantages and security risks.

Traditional web application security methods can be used to secure RIAs, but
these are not enough and RIA developers will need to take extra care when
developing such applications as Edwards [14] has summarised that:

“Although AJAX does not actively make security worse in web application, its
approach to software design can encourage mistakes. Developers need to pay
more attention …”

Traditional Web Applications Scanners (WAS) that are not AJAX or JavaScript
ready, fail to traverse and detect vulnerabilities in RIA. A recent scan that was
carried out on the OfficeMA using the Acunetix [37] WAS has only managed to
scan the login page, but failed to scan the rest of the application as the URLs are
loaded using the JavaScript function window.setTimeOut(), so a new generation
of WAS that can understand JavaScript and AJAX is needed, in the meantime
the developers have to follow good programming practices to ensure these types
applications are secure.

Below is a summary of the main security issues that face the RIA, some of which
are outlined by the OWASP as being in the top 10 vulnerabilities for 2007 [57].

• Insecure Communications

• Session Hijacking

• JavaScript hijacking

• JavaScript tampering

• SQL Injection, Remote file inclusion and Cross-site scripting

For each of these security risks a solution to eliminate or minimize the risk is
discussed below.

139

7.6.1 Insecure Communications

A common solution for this type of problem is the use of encryption in the form of
SSL over HTTP or HTTPS normally used to secure traditional web applications.
This ensures that the communication channel between the client and the server
is secure. HTTPS can be implemented in Tomcat application server or by using
the Apache Web server [38] as a front-end for Tomcat (Figure 71).

This approach has many advantages such as the added advantage of using
Mod-Security [54] on Apache. Mod-Security is a well know robust and effective
web application firewall that can be used to secure the application. Another
added advantage is the ability to provide load balancing between a number of
Tomcat servers behind the Apache server hence scaling up and adding resilience
to the whole solution. Load balancing is achieved by using the new mod_proxy,
and mod_proxy_balancer [39] Apache modules which support the Tomcat AJP
protocol.

Figure 71. Securing OfficeMA application with Apache Web server

140

7.6.2 Session Hijacking

This vulnerability occurs when an attacker steals the session information for a
logged in user. The session information is usually stored in a browser Cookie. In
the case of RIA this risk is amplified because the user interface runs entirely on
the client side and the only way for the server to determine if the client is
legitimate or not is the session.

An approach that can be used to make RIAs more secure is the use of a unique
token per user which will be generated when the user login and sent to the client
side JavaScript to store, the client then sends this to the server on each Ajax
transmission and the server will validate this token against the one stored in the
session to validate the legitimacy of the client [7]. An even more secure approach
is for the server to generate a token on each client’s request and sends it back to
the client. The client then sends this token back to the server upon subsequent
request. So stealing the session information alone will not be enough to retrieve
data from the server

7.6.3 JavaScript Hijacking

JavaScript Hijacking [7] is an issue that was identified with the use of the JSON
notation for transporting JavaScript in Mozilla based browsers. In this
vulnerability the hacker can trick the current user into visiting a malicious website
where the hacker overrides the constructor for the super class of all JavaScript
objects and hence be able to steal sensitive data in JSON format and sends it to
the attacker. The solution for this is use some text that will prevent the server
response from being constructed in JavaScript objects using the eval function
such as using JavaScript comments “/* */”. The application on the client side will
need to remove these comments first before executing the eval function on the
response.

7.6.4 JavaScript Tampering

By most this is the biggest security issue when using a RIA due to the fact that
JavaScript files are transferred to the client side and can be viewed using some
browser utilities (Appendix N). The hacker can investigate the JavaScript and
tries to understand the inner workings of the server or the URLs that are invoked
by the client, although the hacker has to be logged in to be able to invoke any
operations on the server. The hacker can then try to perform some action based
on this knowledge. The solution for this problem can be summarised as follows:

• The use of JavaScript obfuscation, this will make the JavaScript very hard
to read. A gained advantage of this approach is improved loading time for
the JavaScript classes as obfuscation also compresses the files. The

141

developers can work on a fully commented JavaScript code, but this code
is then obfuscated before being build into the deploy file.

• Implementing all the business logic, authorisation, authentication and
access control on the server side. Relying solely on the client side to
validate the user input or to check access roles for the user in RIA is
suicide as the hacker can tamper with the JavaScript code and tries to
carryout tasks not allowed for role currently used.

• For the hacker to be able to tamper with the JavaScript and invoke this on
the server the user need to be logged in, so in this case the server can
take an approach where none of the JavaScript code is transferred to the
client unless the user is logged in.

7.6.5 SQL Injection, Remote file inclusion and Cross-site scripting

These vulnerabilities are widely known in the traditional web applications and are
manifested in the form of injecting some parameters in the request to the server.
To encounter such threats a Web Application Firewall (WAF) such as using
Apache with Mode-Security as a front-end for Tomcat reduces such a risk by
applying negative filtering to parameters supplied by the user. For J2EE
applications an application level filter such as Stinger [56] can also be used for
application level security. Input validation on the server side is very important in
encountering these threats this validation should include type and range
checking and all the special characters should be encoded.

142

7.7 Deployment

The deployment model for the application is shown in Figure 72 below. The
application uses three nodes, the PostgreSQL database server, the Tomcat
application server and the client’s computer and contains two artefacts the
officema.sql file which contains the data definition language used to create the
database for the application and the OfficeMA.war Web Archive file that contains
the Java classes and required libraries for the application to function. As shown
in the diagram below the OfficeMA.war artefact manifests [5] a number of
components that runs the application. The database and the application
deployment instructions are provided in the installation guide (Appendix H).

Figure 72. Deployment diagram for OfficeMA

143

7.8 System Testing

Testing is an important phase in the software development lifecycle. The unit
testing carried out for the project code and outlined in subsections (6.3.6 and
7.2.7) has followed a white-box testing [70] approach that concentrated on
testing a single unit or block of the application code. This type of testing is
sufficient to ensure that a block of code behaves as it is expected, however once
all these blocks are put together to form the overall system an end to end system
testing is needed. This system testing on the other hand follows a black-box
approach and concentrates on the behaviour and the functional requirements of
the system. In this project the functional requirement are described using the
high level use cases.

In the case of Rich Internet Applications, extra testing is required to validate the
user interface and to ensure cross-browser support [29]. Testing the applications
started from the business requirements captured in the use cases. The testing
steps followed the use case to check that the application satisfied the business
requirements. The test strategy followed can be summarised in the steps below:

1. For each use case tests were carried out to validate that the application
satisfied the business requirement summarised by the use case.

2. For each carried test the results were checked to ensure they were
correct. This was done by checking the results on the user interface, the
application log files and finally the database using the tool summarised in
Appendix J.

3. For each of the bugs found an issue was raised the Google Code project
page for the application (Appendix L). The priority of the bug was set
accordingly to its severity.

4. After the test cycle was completed, the raised issues were investigated
using Java debugging and the browser tools summarised in Appendix N.
High priority bugs were fixed first. Lower priority bugs or nice to have
features were fixed if time allowed.

5. The fixed bugs were then tested individually to ensure they were fixed.
6. A new release was then build and deployed into the test environment
7. Step 1 – 6 were repeated again until there was no bugs left or the priority

of the remaining bugs was low and they were accepted by the business.
These steps were also repeated on all the browsers supported by the
application. In the case of this project testing was done on three browsers,
Firefox, Internet Explorer and Safari.

The remaining bugs in the application delivered as part of the project are
summarised in Appendix H. These bugs were not considered critical by the client
and do not hindering the functioning of the application; hence they will be fixed in
a subsequent release.

144

8 Evaluation

The software application developed as part project was evaluated in terms of the
following:

• Satisfaction of business requirements by comparing the prototypes with
the final developed screens

• Accessibility in terms of browsers support and screen resolution.

• Usability, by taking users’ feedback on the usability rules identified in
subsection (2.6.3).

8.1 Satisfaction of business requirements

In the case of the application developed as part of this project it is clear that the
business requirements for the Staff, Tasks, Expenses and System Settings
modules implemented have satisfied the business requirements. This is obvious
from the screenshot provided in the user guide in Appendix I and the prototypes
provided in Appendix C and as a direct result of using the USDP for the design of
the application. One of the advantages of using the USDP and use case driven
modelling is the fact that the developed application can be traced back to the use
case and the business requirements.

8.2 Accessibility

When the development on the application started it was intended to support all
major browsers, however due to time constraints this was not practical. Another
accessibility issue was the screen resolution used the various staff. The project
has found that any screen resolution below 1024 X 768 will not give enough
screen space to implement the various functionality specially with the ‘Add
Expenses’ window which requires a minimum width of 1000 pixels. For this
reason it was decided that the application will only support a minimum resolution
of 1024 X 768. Given the nature of this project and the fact that the employer can
dictate which browser and screen resolution the staff should use to run the
application, it was decided to only support a minimum screen resolution of 1024
X 768, and to only support the following browsers:

• Firefox 2.0

• Internet Explorer 6 and 7

• Safari 3.0.

145

After performing a number of tests using the above browser it was discovered
that Firefox has fully supported the application and has shown high performance
compared to Internet Explorer 6. Testing on Safari also indicated that the support
for the application is quite well apart from one issue which is summarised in the
list of outstanding issues in Appendix I. Testing carried on Internet Explorer on
the other hand has revealed that this browser was the one with the least
performance when running the application compared to the other two browsers.

Many issues have been encountered when running the application using Internet
Explorer and these are summarised in Appendix I. If these issues are considered
to be serious and time consuming to fix, the support for Internet Explorer can be
dropped so that future development of the application can only focus on Firefox
and Safari browsers. The project has decided to drop support for the Opera
browser due to the time constraints and the numerous issues that were
encountered when trying to run the application.

8.3 Usability

The author has interviewed a number of staff after they have used the system for
the first time. Users’ feedback was then categorised in terms of the usability rules
identified in subsection (2.6.3).

8.3.1 Visibility, Affordance and Consistency

Most of the users interviewed have highlighted the fact that the look and feel of
the application has automatically conveyed to them the way it should be used.
The menu and tool bars were an obvious way of invoking the various functionality
of the application. Most users also found the use of the tool-tip on the menu bar
very helpful in identifying the purpose of the tool buttons. Users also found that
the ability to view a number of windows at the same time very helpful in regards
to productivity and multitasking and many were pleased that they do not have to
navigate away from one window in order to view another.

Almost all users interviewed did not believe that the application was a Web
application, and most of them thought of it as being a desktop application similar
to Word and Excel. A few users have suggested the ability to configure the
shortcut button on the toolbar so that these con be configure per user rather that
be a fixed list.

146

8.3.2 Closure, Tolerance and Feedback

All the users interviewed have indicated their satisfaction with the way the
window and the dialogue boxes function in the application. Users have indicated
that the instant feedback on invalid data and expected format when filling forms
have enabled them to effectively use the application without unnecessary
frustration. The users also indicated that the feedback provided by the application
is the form of a loading image or a dialogue box was clear and successfully
conveyed to them the current status of the system, which made the users feel in
control.

8.3.3 Performance and Data Refresh

Users interviewed were impressed and pleased with the performance of the
application. This has enabled the users to efficiently use the application to
complete their tasks, submit their expenses or update their details. Many users
found that the ability to be able to check their details, others details and manage
their expenses efficiently over the Internet very helpful especially in an office with
a number of staff who work remotely. However, some users have indicated that
as they open a large number of applications on their computer the performance
of their browser became sluggish when running the application.

8.4 Evaluation Summary

It clear from the application evaluation performed that the application has
successfully satisfied its requirements and objectives. The user interface
developed has enhanced the users’ productivity and experience compared to a
static Web application using conventional Web pages for display. Having said
this, the application was developed within a constraint environment such as
limited browsers support and minimum resolution, the performance of the
application is also subject to the performance of the browser and the computer
running the user interface. These constraints are the price of utilising some of the
desktop clients’ features in the Web application as now it will also be constraint
with some of the constraints that affects traditional desktop applications.
However, in a controlled environment such as workplace the minimum application
requirements can easily be met.

147

9 Conclusions

The proposal of this project has stared from the requirements to develop a Web
application that can be used to track and manage the expenses for the staff in a
small office. However, the author decided to design and implement a full Office
Management Application that can be used by small businesses to manage their
staff. As part of this dissertation the author has conducted a survey of small
businesses to determine the current processes in place used to manage their
staff, expenses, holidays and timesheets. The survey has found out that most of
these businesses rely on manual processes based on spreadsheet or paper
forms. The main reason behind using such methods was the cost involved in
trying to purchase and install one of the established software products (Table 3).
The project has successfully satisfied the objectives set as follows:

• The project has successfully investigated the possibility of applying the
USDP boundary classes methodology used to design traditional desktop
application in designing and modelling Rich Internet Application user
interface. And has Devised a methodology and applied it to the design and
implementation of the OfficeMA user interface

• The project has successfully gathered and analysed the business
requirements for the Office Management Application using the USDP and
provided the analysis and detailed design UML models in subsections 5.3
and 5.4 and Appendices B and D.

• The project has successfully identified the data requirements for the
application and used the relational database design theory to provide the
Entity-Relations, relational and physical database models for the
application as outlined in subsection 7.4 and Appendices E and F.

• The project has successfully implemented, tested and evaluated the
application using Open Source technologies outlined and Appendix I, and
provides the source code, the binaries and the user documentations for
the application in Appendix H.

9.1 Project Achievements

The project has successfully devised and followed a new design methodology to
design and implement the Office Management Application which satisfied the
original client’s requirements and utilised a number of Open Source technologies
to be cost effective. The project has carried out the design and implementation of
the business logic the user interface and the database for the application and in
doing so explored and utilised a wide range of software design methodologies

148

and Open Source frameworks. The project has also laid the foundation for the
continuing development of the Office Management Application to become a
mainstream application for small businesses.

The project has also assessed a number of technologies such as application
persistence requirements using a persistence framework such as Java
Persistence API. Based on this new Java standard the project has provided a
mechanism (summarised in Table 20) by which the Entity-Relationship model can
be mapped to and translated into Java Annotations so that the Java objects can
easily be serialised to the database tables. Also a transactional framework was
need to coordinate access to the domain objects and manage the security and
persistence; a framework such Spring was used and evaluated against
Enterprise Java Beans.

9.2 Project Issues

The project was hoping to implement an application that incorporates all the
modules identified by the author, however due to time constraints only the Staff,
Expenses, Tasks and System Settings modules were implemented.
Nevertheless, the project has gathered the requirements for and designed the
other modules and future work will be done to implement these remaining
modules in a subsequent version of the application. The time constraints on the
project have risen from the fact that the project has favoured exploring new
avenues for Web development and establishing some methodologies rather than
using the conventional Web development methodologies. In doing so the project
has face many issues in regards to utilising and using a wide range of
technologies, in particular the limitations of HTML and the incompatibility
between the various browsers. The fact that what works in one browser seems to
either not work or work differently in other browsers, was one of the major issues
faced during this project.

9.3 Contributions of this Dissertation

9.3.1 Problems with adapting functional-oriented UI as content-
oriented Web UI

Besides satisfying the requirements of the Office Management Application the
author wanted to investigate the possibility of using Web 2.0 concepts in
particular Rich Internet Applications to design and implement the application.
Rich Internet Applications are Web based applications that possess many
features that are similar to traditional desktop applications, hence utilizing the

149

features of both worlds. One of the problems that have been identified by this
project is that lack of a clear design methodology to design and implement such
types of applications in particular the design of the user interface. Using Web
pages design principles in an attempt to design functionality-oriented rather than
content-oriented user interface adds many complications to the design process,
which can be summarised as follows:

• Complex Web pages that relies heavily on the server, which results in poor
user experience, extra load and complex logic on the server.

• The in-ability to model together the interactions between the user, the user
interface and the application logic in the server, which usually results in
designers adopting none standard methods in attempt to bridge the gap
between functionality and contents.

• Trying to fit the functional-oriented nature of the user interface into Web
pages results in a great deal of desired interactive functionality to be
dropped due to the limitations of what Web pages can do.

9.3.2 Utilising the Web as a functional user interface

The root cause of the above complications is due to the hypertext nature of the
Web which is oriented toward contents and information rather than functionality.
However, although the Web is intrinsically a hypertext medium, the foundations
are there for a functional oriented medium similar to the one used for desktop
applications as demonstrated in the Table 2.

To address the limitations the project has come up with the idea of adopting an
Object-Oriented Web user interface so that the traditional established
methodologies can be applied. An Object-Oriented user interface is very close to
traditional desktop applications that are developed using Object-Oriented
languages such as Visual Basic or Visual C. Methodologies such the ones
outlined by Bennett et al. [4] can easily be applied to design and implement such
a user interface. The project has successfully devised a methodology to design
and implement an Object-Oriented rich user interface in HTML, CSS and
JavaScript which can be summarised below (subsection 6.4.2).

The design methodology which is largely based on the concepts outlined by
Bennett et al. [4]:

• Prototyping the user interface using the RIA techniques outlined by
Dawelbeit [11].

• Designing and elaborating the boundary classes that represent the various
widgets on the user interface. Some of these classes will be developed
and some already exists as DOM objects.

150

• Modelling the interaction involved in the interface using interaction or
communication diagrams. The interactions modelled should also include
the objects on the server that will be handling the messages.

• Modelling the control of the interface using state machines for complex UI
components.

The implementation methodology which was developed as part of this project:

• Choose the Web development toolkit also called AJAX toolkit to be used,
for example Dojo toolkit as used in this project. Most AJAX toolkits
available are Object-Oriented and based on JavaScript.

• For the DOM objects in the boundary classes diagram define the widget
template which consists of HTML, CSS and other widgets. This will later
on be constructed as DOM nodes in the browser.

• For the other objects in the boundary classes diagram define the View
Support Object (VSO) for the widget in using Object-Oriented JavaScript.

• Implement the methods required for the VSO to control the DOM nodes.
These methods follow from the user interface models such as boundary
classes and interaction diagrams. Some of these methods should use the
DOM event model to trap the user’s actions.

Advantages of this approach

Below is a summary of the advantages in following the approach summarised
above to design and implement functionality-oriented Web user interfaces:

• As the display is not generated by the server upon each request the client
can be deigned to work offline and have the ability to connect to the server
when needed.

• The ability to offer greater usability and interaction to the end user as the
user interface is rich and self sufficient.

• Using the server to only transfer data, increases the bandwidth available
to serve more client hence enabling scalability and high server
performance.

• The capability to model the user interface along side the business logic
enables better understanding of the application logic and makes future
changes to the applications a lot easier. This results in time savings in
developing the final product.

151

Disadvantages

• With a great deal of logic written in JavaScript and transferred to the client
side there is a risk of concealed vulnerabilities and possible security
issues such as JavaScript Hijacking and Tempering.

• The approach used in this project relies on the browser capabilities which
are limited. To utilise the operating system features such 3D hardware
acceleration and local storage a browser plug-in will need to be used such
as Java Applets and Flash.

• Trying to adopt this approach requires a high level of experience and
proficiency in Web development to overcome the HTML limitations.

• Cross-browser compatibility adds extra cost during implementation and
testing for projects adopting this approach.

Summary

It is clear from the advantages and disadvantages presented above that this
approach to Web development is only suitable and applicable for functional-
oriented Web applications that are used by a limited number of people on a
regular basis to achieve some specific tasks. These applications are also likely to
be restricted to a secure environment and offer limited browsers support.
Browser support and compatibility in itself is one of the big issues that might
hinder the adoption of these methodologies for mainstream use, however the use
of browser plug-ins such as Microsoft Silverlight or Adobe AIR [11] rather than
directly using the browser capabilities, might well be the answer to this issue and
the way forward.

9.4 Suggestions for Future Work

The project has designed and implemented a HTML based Rich Internet
Application and has explored a wide range of principles and methodologies in the
software design arena. As this type of applications is relatively new and have not
got established principles and methodologies, a great deal of work during the
project went towards defining a methodology that can be followed. Although the
project has tried to touch all the issues concerned with Rich Internet Applications,
it has barely scratched the surface in many areas. Below are suggestions for
future work in the areas touched on during this project

152

9.4.1 Usability and Accessibility of RIA

Usability and accessibility is an area where work has been done for interactive
user interfaces and Web sites. Rich Internet Applications are a hybrid of both
desktop and Web applications and need a customized set of usability design
principles and rules that can be followed. This project has attempted to drive a
set of rules by combining the Web design principles with the traditional user
interface design principles. The project has also managed to carryout some
evaluation on the usability of the application after the initial use by the users;
however further future evaluations will be needed as the users become proficient
in using the application.

9.4.2 Performance of RIA

Another area that will need investigation and quantative measures is the
performance of Rich Internet Applications such as the Office Management
Application. It was observed as part of this project that transferring the HTML to
the browser only once and transferring only data thereafter using JSON has
improved the performance of the application considerably, however future work
will be needed to provide actual statistics of the performance of Rich Internet
Applications compared to traditional Web applications and desktop clients. This
measurement could possibly be performed on three types of application using
the same server to ensure the performance being measured only relates to the
user interface and its functioning.

9.4.3 Enhancements to the Office Management Application

Future work can also be carried out to implement the remaining modules of the
Office Management Application such as the Holidays and Timesheet modules
and provides the ability to generate reports. The project has gathered the
requirements and carried out the design for these remaining modules. Future
work can be done to implement these modules using the same approach
followed in this project.

153

10 References

10.1Books and Articles

[1] Arrington, C.T. and Rayhan, S.H. (2003). Enterprise Java with UML. 2nd

ed. Wiley

[2] Bauer, C. and King, G. (2007). Java Persistence with Hibernate.
Greenwich: Manning Publications.

[3] Bell, D. (15 Jun 2003) UML basics: An introduction to the Unified
Modelling Language. URL: http://www-
128.ibm.com/developerworks/rational/library/769.html
[30 September 2007]

[4] Bennett, S. McRobb, S. and Farmer, R. (2006). Object-oriented
systems analysis and design using UML. 3rd ed. London: McGraw-Hill
Companies.

[5] Bennett, S. Skelton, J. Lunn, K. (2004). Schaum’s Outline UML. 2nd ed.
McGraw-Hill.

[6] Bracha, G. (2004). Generics in the Java Programming Language. URL:
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
[30 September 2007]

[7] Chess, B., O’Neil, Y. and West, J. (2007). JavaScript Hijacking. URL:
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hija
cking.pdf
[10 February 2008]

[8] Connolly, T. Begg, C. (2005). Database Systems: A practical approach
to Design, Implementation, and Management. 4th ed. Addison Wesley.

[9] Couch, J. and Steinberg, H. (2002). Java 2 Enterprise Edition Bible.
Wiley.

[10] Crane, D. Pascarello, E. James, D. (2006). Ajax In Action. Greenwich:
Manning Publications.

[11] Dawelbeit, O. (2008). Web User Interface from Prototyping to
Implementation. URL: http://change-vision.blogspot.com/
[10 April 2008]

154

http://change-vision.blogspot.com/
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://www-128.ibm.com/developerworks/rational/library/769.html
http://www-128.ibm.com/developerworks/rational/library/769.html

[12] Douglas, N. (2007). Free end-users to cash in on Web 2.0. Computer
Weekly. 22, 16-16.

[13] Elmasri, R. Navathe, S. (1999). Fundamentals of database systems. 3rd

ed. Addison-Wesley.

[14] Edwards, C. (2007). Bandwagon: Has Ajax Over Exposed Itself. IET
Information Professional. June/July 2007, 10-11.

[15] Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the
Heart of Software. Boston: Addison-Wesley Professional.

[16] Gadge, V. Technology options for Rich Internet Applications. URL:
http://www-128.ibm.com/developerworks/library/wa-richiapp/
[16 September 2007]

[17] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley.

[18] Garrett, J. J. Ajax: A New Approach to Web Applications. 18th Feb 2005.
URL: http://www.adaptivepath.com/ideas/essays/archives/000385.php
[20 September 2007]

[19] Garrett, J. J. (2002). The Elements of User Experience: User-Centered
Design for the Web. New Riders Press.

[20] Glowiak, M. MySQL vs. PostgreSQL. URL:
http://monstera.man.poznan.pl/wiki/index.php/Mysql_vs_postgres
[11 February 2008]

[21] Grand, M. (1998). Patterns in Java, Volume 1, A Catalog of Reusable
Design Patterns Illustrated with UML. John Wiley & Sons, 2 vols.

[22] Nielsen, J. (2002). Usability of Ephemeral Web-Based Applications.
URL: http://www.useit.com/alertbox/20021125.html
[12 February 2008]

[23] Open University (1999). M358 Block4 : Development of Database
Systems. The Open University, Milton Keynes.

155

http://www.useit.com/alertbox/20021125.html
http://monstera.man.poznan.pl/wiki/index.php/Mysql_vs_postgres
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www-128.ibm.com/developerworks/library/wa-richiapp/

[24] O’Reilly, T. What Is Web 2.0, Design Patterns and Business Models for
the Next Generation of Software.
URL: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html?page=1
[16 September 2007]

[25] O’Reilly, T. Web 2.0: Compact Definition?. URL:
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.ht
ml
[16 September 2007]

[26] Pawson, R. (2004). Naked Objects. PhD thesis. Trinity College, Dublin.

[27] Pettey, C. Goasduff, L. Gartner’s 2006 Emerging Technologies Hype
Cycle Highlights Key Technology Themes. URL:
http://www.gartner.com/it/page.jsp?id=495475
[10 February 2008]

[28] Rajagopalan, S. Rajamani, R. Krishnaswamy, R. and Vijendran, S.
(2002). Java Servlet Programming Bible. Wiley.

[29] Rymer, J. and Stone, J. (2007). Rich Internet Apps Move Beyond the
Browser. Forrester’s Reports. URL:
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.
html
[10 February 2008]

[30] Richardson, C. (2006). POJOs in Action, Developing Enterprise
Applications with Lightweight Frameworks. Greenwich: Manning
Publications.

[31] Shin, S. Web Application Security Threats and Counter Measures. URL:
http://www.javapassion.com/
[12 February 2008]

[32] Shneiderman, B. (1998). Designing the User Interface: Strategies for
Effective Human-Computer Interaction. 3rd ed. Addison Wesley.

[33] Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface:
Strategies for Effective Human-Computer Interaction. 4th ed. Addison
Wesley.

[34] Stone, D. Jarrett, C. Woodroffe, M. and Minocha, S. (2005). User

156

http://www.javapassion.com/
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.html
http://www.gartner.com/it/page.jsp?id=495475
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1

interface design and evaluation. Amsterdam ; London : Elsevier :
Morgan Kaufmann.

[35] Walls, C. Breidenbach, R. (2006). Spring in Action.2nd ed. Greenwich:
Manning Publications.

10.2Web references

[36] A government action plan for small business. Department of Trade and
Industry. URL: http://www.berr.gov.uk/files/file39768.pdf
[12 February 2008]

[37] Acunetix Web Vulnerability Scanner v4 (Consultant Edition). URL:
http://www.acunetix.com/vulnerability-scanner/
[12 February 2008]

[38] Apache Web Server and Modules. URL: http://httpd.apache.org/
[12 February 2008]

[39] Core J2EE Patterns – Data Access Object. URL:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessOb
ject.html
[12 February 2008]

[40] Crow’s Foot notation. URL: http://en.wikipedia.org/wiki/Entity-
relationship_diagram#Crow.27s_Feet
[12 February 2008]

[41] Database design: Choosing a primary key. URL:
http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-
key/
[12 February 2008]

[42] Dojo Ajax Toolkit. URL: http://dojotoolkit.org/
[12 February 2008]

[43] Dojo Toolkit Object oriented concepts and inheritance. URL:

157

http://dojotoolkit.org/
http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-key/
http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-key/
http://en.wikipedia.org/wiki/Entity-relationship_diagram#Crow.27s_Feet
http://en.wikipedia.org/wiki/Entity-relationship_diagram#Crow.27s_Feet
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://httpd.apache.org/
http://www.acunetix.com/vulnerability-scanner/
http://www.berr.gov.uk/files/file39768.pdf

http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-
model/object-oriented-concepts-and-inheritance
[12 February 2008]

[44] EHCache general purpose caching framework. URL:
http://ehcache.sourceforge.net/
[01 October 2007]

[45] Enum Java 5 feature. URL:
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html
[01 October 2007]

[46] Generics Java 5 feature. URL:
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
[01 October 2007]

[47] Hibernate, Relational Persistence for Java and .NET. URL:
http://www.hibernate.org/
[12 February 2008]

[48] Hibernate, Relational Persistence for Java and .NET. URL:
http://www.hibernate.org/
[12 February 2008]

[49] Jakarta DBCP connection pooling component. URL:
http://commons.apache.org/dbcp/
[01 October 2007]

[50] Java Persistence API blueprints. URL:
https://blueprints.dev.java.net/bpcatalog/ee5/persistence/index.html
[12 February 2008]

[51] Java Persistence API Javadoc. URL:
http://java.sun.com/javaee/5/docs/api/javax/persistence/package-
summary.html
[01 October 2007]

[52] JavaScript Object Notation. URL: http://www.json.org/
[12 February 2008]

[53] Microsoft Office SharePoint Server. URL:
http://www.microsoft.com/sharepoint/default.mspx
[12 February 2008]

[54] Mod-Security Web Application Firewall. URL:

158

http://www.microsoft.com/sharepoint/default.mspx
http://www.json.org/
http://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://blueprints.dev.java.net/bpcatalog/ee5/persistence/index.html
http://commons.apache.org/dbcp/
http://www.hibernate.org/
http://www.hibernate.org/
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html
http://ehcache.sourceforge.net/
http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-model/object-oriented-concepts-and-inheritance
http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-model/object-oriented-concepts-and-inheritance

http://www.modsecurity.org/
[12 February 2008]

[55] Oracle Human Resources Management System. URL:
http://www.oracle.com/applications/human_resources/intro.html
[12 February 2008]

[56] OWASP Stinger Filter for J2EE applications. URL:
http://www.owasp.org/index.php/OWASP_Stinger_Manual
[12 February 2008]

[57] OWASP Top 10. The ten most critical web application security
vulnerabilities, 2007 update. URL:
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
[12 February 2008]

[58] PostgreSQL 8.2 documentation manual online. URL:
http://www.postgresql.org/docs/8.2/static/index.html
[01 October 2007]

[59] Sage Business Support Services. URL:
http://www.sage.co.uk/home.aspx
[12 February 2008]

[60] Spring Application Framework. URL: http://www.springframework.org/
[12 February 2008]

[61] Spring Framework Transaction Management. Spring guide online,
chapter 9. URL:
http://static.springframework.org/spring/docs/2.0.x/reference/transaction
.html
[01 October 2007]

[62] Struts 2 JSON plug-in. URL: http://code.google.com/p/jsonplugin/
[12 February 2008]

[63] Struts 2 MVC Framework. URL: http://struts.apache.org/2.x/
[12 February 2008]

[64] Struts 2 Request Flow. URL: http://struts.apache.org/2.0.11/docs/the-
struts-2-request-flow.html
[12 February 2008]

159

http://struts.apache.org/2.0.11/docs/the-struts-2-request-flow.html
http://struts.apache.org/2.0.11/docs/the-struts-2-request-flow.html
http://struts.apache.org/2.x/
http://code.google.com/p/jsonplugin/
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://www.springframework.org/
http://www.sage.co.uk/home.aspx
http://www.postgresql.org/docs/8.2/static/index.html
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
http://www.owasp.org/index.php/OWASP_Stinger_Manual
http://www.oracle.com/applications/human_resources/intro.html
http://www.modsecurity.org/

[65] The New Methodology. URL:
http://martinfowler.com/articles/newMethodology.html
[12 February 2008]

[66] Tibco General Interface, Getting started guide. URL:
www.tibco.com/devnet/resources/gi/3_3/tib_gi_pe_getting_started.pdf,
pp14.
[01 October 2007]

[67] Tomcat Java Application Server. URL: http://tomcat.apache.org/
[12 February 2008]

[68] Tommie Web Office and Online Diary System. URL:
http://www.tommie.co.uk/
[12 February 2008]

[69] UML Superstructure Specification, v2.1.1, p. 620. URL:
http://www.omg.org/technology/documents/formal/uml.htm
[01 October 2007]

[70] What is black box/white box testing? URL:
http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html
[12 February 2008]

[71] Windows Vista User Experience Guidelines. URL:
http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-
a9d5-2d4e3f3ec1d3/ux%20guide.pdf
pp 2-10
[01 October 2007]

160

http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html
http://www.omg.org/technology/documents/formal/uml.htm
http://www.tommie.co.uk/
http://tomcat.apache.org/
http://www.tibco.com/devnet/resources/gi/3_3/tib_gi_pe_getting_started.pdf
http://martinfowler.com/articles/newMethodology.html

11 Appendices

161

11.1 Appendix A – Office Management Application’s Modules Survey

Business Industry Size Dedicated HR
Staff

Staff
Management

Holiday
Management

Expenses
Management

Timesheet
Management

Pay
Management

Computer
Network

1 Construction 7 No Paper based
record keeping

Spreadsheet Spreadsheet Spreadsheet Outsourced,
done using
SAGE

Yes

2 Construction 7 No Paper based
record keeping

Spreadsheet Spreadsheet Spreadsheet In-house, done
using SAGE

Yes

3 IT
Consultancy

13 No Spreadsheet Spreadsheet Spreadsheet Web
Application

Outsourced Yes

4 Automotives 16 Yes Spreadsheet Spreadsheet Spreadsheet No timesheet Outsourced Yes

5 Automotives 50 No Microsoft
Access forms

Paper based Paper based Spreadsheet In-house Yes

6 Health Care 130 Yes Held and
updated by HR
using Microsoft
SharePoint

Done using
SharePoing
forms

Done using
SharePoing
forms

Done using
SharePoing
forms

Outsourced Yes

7 Manufacturing 140 Yes System
managed by HR
department

Spreadsheet
submitted to
HR

Spreadsheet
submitted to
HR

Automated
clocking-in
system

In-house
accountants

Yes

8 Utilities
Provider

230 Yes Updated by HR
using Oracle HR

Paper based
form
submitted to
HR. Done
using Oracle
HR

Paper based
form
submitted to
HR. Done
using Oracle
HR

No timesheet
for office staff,
field staff
completes
paper form.

Outsourced Yes

162

11.2 Appendix B – Documents Sampling

11.2.1Sample holiday control spreadsheet

Staff Holiday
John Smith 12 H H H H H
William Hans 5
Julie Eldrige 3 H H
Omer Dawelbeit 1
Thomas Julian 5 H

01-Jan 08-Jan 15-Jan

163

11.3 Appendix C – Use Case Models

11.3.1Add Staff Use Case

Figure 73. Add staff use case diagram

Name:
Add Staff

Description:
The administrator adds a new member of staff. First all the Available grades,
work-streams, online access roles and staff names are retrieved. The admin
user completes the personal, bank, address, employment and online details.

Assumptions
• Grades have been added to the system
• Online access roles have been added to the system.
• A number of work-streams have been added to the system.
• The required details for the new member of staff are available

Preconditions
• User is logged in to the system

Post-conditions
• The new member of staff is added successfully to the system and

their details can be viewed/edited

Normal flow of events – The administrator successful adds a member of
staff

• The administrator selects the add new staff option
• The administrator fills the personal, bank, address, employment

and online details for the new member of staff

164

• The administrator clicks the add button
• A message is displayed indicating that the employee details are

successfully added

Alternative flow of events – The administrator populate some invalid details

• The administrator selects the add new staff option
• The administrator fills the personal, bank, address, employment

and online details for the new member of staff, but forgets some of
the mandatory details.

• The administrator clicks the add button
• The system creates a task for the new staff member to change their

password.
• A message is displayed indicating that some of the details provided

are invalid; no change is made to existing data.

Alternative flow of events – Employee already exists
• The administrator selects the add new staff option
• The administrator fills the personal, bank, address, employment

and online details for the new member of staff, but forgets some of
the mandatory details.

• The administrator clicks the add button
• The administrator is notified of the conflict. No change is made to

the existing data.

Alternative flow of events – Administrator cancels the process
• The administrator selects the add new staff option
• The administrator fills the personal, bank, address, employment

and online details for the new member of staff, but forgets some of
the mandatory details.

• The administrator clicks the Cancel button
• No change is made to the existing data.

Exception flow of events – The system is unable to add the new staff details
due to an error

• The administrator selects the add new staff option
• The administrator fills the personal, bank, address, employment

and online details for the new member of staff, but forgets some of
the mandatory details.

• The administrator clicks the add button
• The administrator is notified that the details can’t be added to the

system due to a system error.

Notes:

165

Staffs sensitive details such bank account, etc… are stored in encrypted
format

Activity Diagram

166

Prototype

167

168

11.3.2Find Staff Use Case

Figure 74. Find staff use case diagram

Name:
Find Staff

Description:
Search for a member of staff or browse all staff details. The user can search
by name, id, employee type, work stream or project

Assumptions
• Staff details are added to the system.
• Only current staff details can be viewed by regular staff. The details for

staff who left can only be viewed by administrators

Preconditions
User is logged in to the system.

169

Post-conditions
• The staff member finds the details of the staff member they are trying to

find. Or none if the details searched for are not found

Normal flow of events – The staff member successfully find the details they
are searching for, one result found

• The staff member selects the find employee option
• The staff member selects the search type.
• The staff member enters the search criteria details and click the search

button
• The details for staff searched for are displayed

Alternative flow of events – The staff member successfully find the details
they are searching for, more than one result found

• The staff member selects the find employee option
• The staff member selects the search type.
• The staff member enters the search criteria details and click the search

button
• The records matching the search criteria are displayed.

Alternative flow of events – No details found for search
• The staff member selects the find employee option
• The staff member selects the search type.
• The staff member enters the search criteria details and click the search

button
• A message is displayed indicating that no details were found.

Exception flow of events – The system is unable to perform the staff details
search due to an error
• The staff member selects the find employee option
• The staff member selects the search type.
• The staff member enters the search criteria details and click the search

button
• A message is displayed indicating that an error has occurred.

170

Activity Diagram

Prototype

171

11.3.3View Personal Details / Edit Personal Details

Figure 75. View/Edit personal details use case diagram

Name:
View personal details

Description:
The current member of staff views their personal details. After view their
details members of staff can also edit these details. Regular staff can edit only
a subset of their details. On the other hand Admin users can edit all their
personal details.

Assumptions
• None

Preconditions
User is logged in to the system.

Post-conditions
• If the staff member has edited their personal details, then the new

changes are persisted and can be viewed using view my details use case.

Normal flow of events – The staff member successfully views their details
• The staff member selects the my details option
• The details for the staff member are displayed.

Alternative flow of events – The staff member successfully edit their details
• The staff member selects the my details option
• The details for the staff member are displayed.
• The staff member selects to edit his/her personal details.
• The staff member edit their details, not all details are editable for regular

staff members

172

• The staff member save the changes they made to their personal details
• The system generates a task for the Administrator to review the changes

Alternative flow of events – An Administrator successfully edit their details
• The administrator selects the my details option
• The details for the administrator are displayed.
• The administrator selects to edit his/her personal details.
• The administrator edit their details, all details are editable.
• The administrator save the changes they made to their personal details

Alternative flow of events – The staff member edits their details, but cancels
the operation

• The staff member selects the my details option
• The details for the staff member are displayed.
• The staff member selects to edit his/her personal details.
• The staff member edit their details
• The staff member cancels their changes. No changes are made to

underlying data

Exception flow of events – The system is unable to display the details of the
current staff member due to an error
• The staff member selects the my details option
• A message is displayed indicating that an error has occurred.

Outstanding issues
Clarify which fields will be editable for staff members, some candidates are
email, contact numbers and address.

173

Activity Diagram

174

11.3.4View brief / complete staff details

Figure 76. View brief/complete staff details use case diagram

Name:
View staff details

Description:
The current member of staff views the details of another staff member.
Regular staff member can view a brief summary of other staff details. Admin
and accountant users can view all the details for any member of staff.

Assumptions
• None

Preconditions
• User is logged in to the system.
• The current user has located the details for another staff member using

the find staff use case

Post-conditions
• None

Normal flow of events – Regular staff member views the details of another
staff member

• The staff member selects to view the staff details of another staff

175

• The brief details for the other staff member are displayed.

Alternative flow of events – Administrator or accountant views the details of
another staff member

• The administrator or accountant selects to view the staff details of another
staff

• The full details for the other staff member are displayed

Exception flow of events – The system is unable to display the details of the
staff member due to an error

• The staff member selects to view the staff details of another staff
• A message is displayed indicating that an error has occurred.

Outstanding issues
Clarify which staff member fields will viewable by other regular staff members.

Activity Diagram

176

11.3.5Edit staff details

Figure 77. Edit staff use case diagram

Name:
Edit staff details

Description:
Admin users can edit other staff details.

Assumptions
• The member of staff to be edited is already registered

Preconditions
• User is logged in to the system.
• The current user has located the details for another staff member using

the find staff use case
• The current user view the staff member details using the view details use

case

Post-conditions
• If the edited staff details are saved then these details are persisted and

can be viewed using the find staff use case

Normal flow of events – Administrator successfully edits the details of
another staff member

• The administrator selects to edit the details of another staff member
• The full details of the other staff member are displayed.

177

• The administrator edits the personal, bank, address, employment and
online details for the staff member.

• The administrator set the leaving date if applicable and the staff member
has left.

• The administrator saves the details
• A message is displayed indicating the save was successful.
• The system creates a task to inform the staff member of the changes

Alternative flow of events – The administrator populate some invalid details

• The administrator selects to edit the details of another staff member
• The full details of the other staff member are displayed.
• The administrator edits the personal, bank, address, employment and

online details for the staff member.
• The administrator set the leaving date if applicable and the staff member

has left.
• The administrator tries to saves the details
• A message is displayed indicating that some of the details provided are

invalid; no change is made to existing data.

Alternative flow of events – Administrator edits the details of another staff
member, but cancels his/her action

• The administrator selects to edit the details of another staff member
• The full details of the other staff member are displayed.
• The administrator edits the personal, bank, address, employment and

online details for the staff member.
• The administrator set the leaving date if applicable and the staff member

has left.
• The administrator cancels the changes. No change is made to underlying

data.

Exception flow of events – The system is unable to save the details of the
staff member due to an error

• The administrator selects to edit the details of another staff member
• The full details of the other staff member are displayed.
• The administrator edits the personal, bank, address, employment and

online details for the staff member.
• The administrator set the leaving date if applicable and the staff member

has left.
• The administrator saves the details
• A message is displayed indicating there was an error saving the details.

Outstanding issues
Are administrators assigned a specific set of staff they can manage, by a
super user or they can manage any staff details.

178

Activity Diagram

179

11.3.6Find Expenses

Figure 78. Find expense use case diagram

Name:
Find Expenses

Description:
Staff members can find their expenses using an expenses browser, where
they can search by year or expenses status. Approvers can also search
expenses they are approving by staff name, year or expenses status. This
use case is part of the View Expenses, Approve Expenses and Pay Expenses
use cases

Assumptions
• Expenses have the following statuses: New, Saved, Pending, Rejected,

Approved and Paid

Preconditions
• User is logged in to the system.

180

Post-conditions
• None

Normal flow of events – Regular staff member searches for an expense
• The staff member selects the find expense option
• The staff member sets the view criteria, either view all expenses, view by

year or view by status.
• The member of staff check the displayed list and select the expense they

are looking for

Alternative flow of events – Approver or accountant searches for expenses
of another staff member

• The Approver or accountant selects the find expense option
• The Approver selects the staff member name from a list of staff they are

allowed to approve expenses for
• The Accountant selects the staff member name from all staff list.
• The staff member sets the view criteria, either view all expenses, view by

year or view by status. Available statuses are: Pending, Approved and
Paid.

• The Approver or accountant check the displayed list and select the
expense they are looking for

Exception flow of events – The system is unable to find staff expense due
to an error

• The staff member selects to view expenses
• A message is displayed indicating that an error has occurred.

Outstanding issues
None

181

Activity Diagram

182

Prototype

183

184

11.3.7View, approve, reject and pay Expenses

Figure 79. View, approve, reject and pay expenses use Case diagram

Name:
View Expenses

Description:
After finding an expense the staff member can view its details.

Assumptions
• Expenses have the following statuses: New, Saved, Pending, Rejected,

Approved and Paid
• Approvers can see Pending, Approved and Paid expenses
• Accountant can see Approved and Paid expenses.

Preconditions
• User is logged in to the system.
• User navigate to the target expense using the find expenses use case

Post-conditions

185

• None

Normal flow of events – Staff member view an expense
• The staff member click on an expense
• The system displays the expense details
• The staff member views the displayed expense details.

Alternative flow of events – Staff member edits a saved or rejected expense
• The staff member click on an expense
• The system displays the expense details
• The staff member views the displayed expense details.
• The staff member click on the edit button
• The staff member is forwarded to the edit expenses use case

Alternative flow of events – Approver approves or rejects expense
• The approver click on an expense
• The system displays the expense details
• The approver views the displayed expense details.
• The approver click on the approve button or select some expense items

enter some text and reject the expenses
• The expense is saved in either approved or rejected status
• If rejected the system generate a task for staff member

Alternative flow of events – accountant pays an expense
• The accountant click on an expense
• The system displays the expense details
• The accountant views the displayed expense details.
• The accountant enters the paid date and click the pay button
• The expense is saved in paid status

Exception flow of events – The system is unable to find expense due to an
error

• The staff member click on an expense
• A message is displayed indicating that an error has occurred.

Outstanding issues
Decide on which expense details to display

186

Activity Diagram

Prototype

187

11.3.8Edit Expenses Use Case

Name:
Edit Expenses

Description:
After viewing an editable expense or trying to add a new expense for a period
where a saved expense already exist the staff member is allowed to edit the
expense and cancel, save or submit their changes
.

Assumptions
• Expenses have the following statuses: New, Saved, Pending, Rejected,

Approved and Paid
• When adding expenses for a period and saved expenses exist for the

same period then the system displays the saved expenses instead

Preconditions
• User is logged in to the system.
• User views the expense using the view expenses use case
• User selects a period with a saved expense using the add new expenses

use case

188

Post-conditions
• The edited expense details are persisted if the user has submitted them,

otherwise no change is made to underlying data

Normal flow of events – Staff member edits an expense and submits it.
• The staff member reviews and/or modifies the current entries.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member submit their expenses
• Expense details is saved and status changes to Pending
• A task is generated for the approver
• A confirmation is displayed confirming the submit
• The edit window is closed.

Alternative flow of events – Staff member edits an expense and saves it.
• The staff member reviews and/or modifies the current entries.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member save their expenses
• Expense details is saved and status stays as saved the last saved date is

updated
• A confirmation is displayed confirming the successful save

Alternative flow of events – Staff member edits an expense, but cancels
their changes.

• The staff member reviews and/or modifies the current entries.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member cancel their changes
• A confirmation is displayed asking the staff member if they want to

abandon their changes

Exception flow of events – The system is unable to save or submit expense
due to an error

• The staff member reviews and/or modifies the current entries.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member save or submit their expenses
• An error message is displayed indicating an error

Outstanding issues
Decide on which expense details to display

189

Activity Diagram

190

Prototype

11.3.9Add New Expenses Use Case

Figure 80. Add new expenses use case diagram

Name:
Add Expenses

Description:

191

A staff member can add new expenses after choosing the period of the
expense if a saved expense exist for the chosen period then the staff edits the
expense using the edit expenses use case.

Assumptions
• Expenses have the following statuses: New, Saved, Pending, Rejected,

Approved and Paid
• When adding expenses for a period and saved expenses exist for the

same period then the system displays the saved expenses instead

Preconditions
• User is logged in to the system.

Post-conditions
• The added expense details are persisted if the user has submitted them,

otherwise no change is made to underlying data

Normal flow of events – Staff member adds an expense and submits it.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member edits a newly added entry
• The staff member submit their expenses
• Expense details is saved and status changes to Pending
• The system generates a task for the approver
• A confirmation is displayed confirming the submit
• The edit window is closed.

Alternative flow of events – Staff member add an expense for a period for
which a saved one already exists.

• The staff member edits the saved expense as outline in the edit expense
use case.

Alternative flow of events – Staff member add an expense and saves it.
• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member edits a newly added entry
• The staff member save their expenses
• Expense details is saved and status stays as saved the last saved date is

updated
• A confirmation is displayed confirming the successful save

Alternative flow of events – Staff member add an expense, but cancels their
changes.

• The staff member adds new entries.

192

• The staff member edits a newly added entry
• The staff member deletes an entry if need be.
• The staff member cancel their changes
• A confirmation is displayed asking the staff member if they want to

abandon their changes

Exception flow of events – The system is unable to save or submit expense
due to an error

• The staff member adds new entries.
• The staff member deletes an entry if need be.
• The staff member save or submit their expenses
• An error message is displayed indicating an error

Outstanding issues
Decide on which expense details to display

193

Activity Diagram

194

Prototype

195

11.3.10Login use case

Name:
Login

Description:
The member of staff provides their username and password to login and the
system performs authentication and authorisation on the details provided..

Assumptions
• None

Preconditions
• None.

Post-conditions
• The user is logged in to the system and has the correct role applied

Normal flow of events – Staff member successfully login to the system.
• The staff member enters their username and password.
• The staff member clicks the login button.
• The system authenticates the staff member against stored details.
• The system resets the invalid login details for the staff member
• The system displays the application desktop.

Alternative flow of events – Staff member username is not found or the
account is locked.

• The staff member enters their username and password.
• The staff member clicks the login button.
• The system authenticates the staff member against stored details
• The system displays a message that the username and password

provided are invalid or that the account is locked and the user should
contact an administrator.

• The system creates a task to inform the administrator of the incident.

Alternative flow of events – Staff member password is not correct.
• The staff member enters their username and password.
• The staff member clicks the login button.
• The system authenticates the staff member against stored details
• The system increments the invalid login count
• The system displays a message that the username and password

provided are invalid.
• If this the last attempt before the account is locked. The system locks the

account

196

Exception flow of events – The system is authenticate the staff member due
to an error

• The staff member enters their username and password.
• The staff member clicks the login button.
• The system authenticates the staff member against stored details
• The system displays a message indicating an error has occurred.

Outstanding issues
None

Activity Diagram

197

11.3.11View/Update system settings

Name:
View/Update system settings

Description:
An administrator can view the system wide settings and update/save them.
After viewing the system settings the administrator updates the setting

Assumptions
• None

Preconditions
• None.

Post-conditions
• The updated system settings are successfully saved

Normal flow of events – Administrator successfully views system settings.
• The Administrator clicks on the system setting options.
• The application retrieves the settings currently stored.
• The application displays the system settings.
• The Administrator views the various settings
• The administrator closes the system settings window.

Alternative flow of events – Administrator successfully updates the system
settings.

• The Administrator clicks on the system setting options.
• The application retrieves the settings currently stored.
• The application displays the system settings.
• The administrator modifies the system settings such as holiday rules,

creates a new workstream, project, user role, etc… and click the save
button

• The application displays a message that the settings were saved
successfully

Alternative flow of events – Administrator changes the system settings but
cancel the changes.

• The Administrator clicks on the system setting options.
• The application retrieves the settings currently stored.
• The application displays the system settings.
• The administrator modifies the system settings and click the cancel button
• The system settings window is closed.

198

Exception flow of events – The system fails to update the system settings
due to an error

• The Administrator clicks on the system setting options.
• The application retrieves the settings currently stored.
• The application displays the system settings.
• The administrator modifies the system settings and click the save button
• The system displays a message indicating an error has occurred.

Outstanding issues
None

199

Activity Diagrams

200

201

11.3.12Update my settings

Name:
Update my settings

Description:
A staff member can change their online password or update their online
preferences such as desktop background colour, etc...

Assumptions
• None

Preconditions
• None.

Post-conditions
• The updated staff member settings are successfully saved

Normal flow of events – Staff member successfully update their settings.
• The staff member clicks on my setting options.
• The application retrieves the settings currently stored for the staff member.
• The application displays the staff member settings.
• The staff member changes their password by entering their current

password and new password
• The staff member changes their preferences
• The staff member then saves the current changes.
• The system displays a success message

Alternative flow of events – Staff member views their settings.
• The staff member clicks on my setting options.
• The application retrieves the settings currently stored for the staff member.
• The application displays the staff member settings.
• The staff member view their settings
• The staff member clicks the cancel button

Alternative flow of events – Staff member changes the system settings but
cancel the changes.

• The staff member clicks on my setting options.
• The application retrieves the settings currently stored for the staff member.
• The application displays the staff member settings.
• The staff member changes their password by entering their current

password and new password
• The staff member changes their preferences
• The staff member modifies their settings and click the cancel button

202

• The system settings window is closed, and underlying data is not
changed.

Exception flow of events – The system fails to update the staff member
settings due to an error

• The staff member clicks on my setting options.
• The application retrieves the settings currently stored for the staff member.
• The application displays the staff member settings.
• The staff member changes their password by entering their current

password and new password
• The staff member changes their preferences
• The staff member then click the save button.
• The system displays a message indicating an error has occurred.

Outstanding issues
None

Activity Diagrams

203

11.3.13View/Add Timesheet

Name:
View or Add Timesheet

Description:
Staff members can view their timesheet for a specific period and also
update/save their timesheet or add a new entry. Administrator can view or edit
timesheet entries for all staff members

Assumptions
• Administrators can view and edit timesheet entries for all staff

Preconditions
• None.

204

Post-conditions
• The updated staff member timesheet are successfully saved

Normal flow of events – Staff member successfully view their timesheet.
• The staff member clicks on view timesheet.
• The application retrieves the timesheet entries for the currently selected

period.
• The application pre-populates any holidays requested in the holiday

booking system for the current period
• The application displays the staff member timesheet entries.
• The staff member clicks the cancel button

Alternative flow of events – Staff member successfully update their
timesheet.

• The staff member clicks on view timesheet.
• The application retrieves the timesheet entries for the currently selected

period.
• The application displays the staff member timesheet entries
• The staff member updates their timesheet entries
• The staff member then saves the current changes.
• The system displays a success message

Alternative flow of events – Staff member successfully update their
timesheet but cancel the changes.

• The staff member clicks on view timesheet.
• The application retrieves the timesheet entries for the currently selected

period.
• The application displays the staff member timesheet entries
• The staff member updates their timesheet entries and click the cancel

button
• The system settings window is closed, and underlying data is not

changed.

Exception flow of events – The system fails to update the staff member
settings due to an error

• The staff member clicks on view timesheet.
• The application retrieves the timesheet entries for the currently selected

period.
• The application displays the staff member timesheet entries
• The staff member updates their timesheet entries
• The staff member then saves the current changes.
• The system displays a message indicating an error has occurred.

Outstanding issues

205

None

Activity Diagrams

206

11.3.14View timesheet summary

207

Name:
View timesheet summary

Description:
Staff members views a summary of their timesheet entries

Assumptions
• Administrators can view the timesheet entries summary for all staff

Preconditions
• None.

Post-conditions
• None.

Normal flow of events – Staff member successfully view their timesheet.
• The staff member clicks on view timesheet summary.
• The staff member selects the period to view
• The application retrieves the timesheet entries summary for the currently

selected period.
• The application displays the staff member timesheet entries summary.
• The staff member view the summary then clicks the close button

Exception flow of events – The system fails to retrieve the summary for the
staff member due to an error

• The staff member clicks on view timesheet summary.
• The staff member selects the period to view
• The system displays a message indicating an error has occurred.

Outstanding issues
None

Activity Diagrams

208

209

11.3.15View Holiday Details use case

Name:
View Holiday details

Description:
Staff member can view their holiday summary and request new holiday or
cancel a requested holiday. The system should also enforce the holiday roles
and import holidays entered in the timebooking system. Holiday approvers
should be able to view the holiday for their staff and approve or reject their
holidays.

Assumptions
• Holiday approvers can update, approve or reject holiday for their staff.
• Holidays have statuses, which can be requested, approved and taken.

The holiday becomes taken when entered in the timesheet.
• Each employee have holiday entitlement for each holiday year

Preconditions
• None.

Post-conditions
• None

Normal flow of events – Staff member successfully view their holiday
summary.

• The staff member clicks on view holiday.
• The system retrieves the holiday for the staff member.
• The system retrieves the holidays booked in the time-booking system.
• The system displays the holiday summary for the staff member.
• The system displays approve, reject and cancel buttons for approvers.
• The staff member views the details then clicks the close button

Alternative flow of events – Staff member successfully request new holiday.
• The staff member clicks on view holiday.
• The system retrieves the holiday for the staff member.
• The system retrieves the holidays booked in the time-booking system.
• The system displays the holiday summary for the staff member.
• The staff member then request a new holiday by selecting the start date

and finish date, then submits their request.
• The system saves the holiday request and creates a task for the holiday

approver.
• The system displays a success message

210

Alternative flow of events – Staff member successfully cancels a requested
holiday.

• The staff member clicks on view holiday.
• The system retrieves the holiday for the staff member.
• The system retrieves the holidays booked in the time-booking system.
• The system displays the holiday summary for the staff member.
• The staff member selects a requested holiday and clicks the cancel

button.
• The system deletes the holiday request.
• The system displays a success message

Exception flow of events – The system fails to update the staff holidays due
to an error

• The staff member clicks on view holiday.
• The system retrieves the holiday for the staff member.
• The system retrieves the holidays booked in the time-booking system.
• The system displays the holiday summary for the staff member.
• The staff member then request a new holiday by selecting the start date

and finish date, then submits their request.
• The system displays a message indicating an error has occurred.

Outstanding issues
None

211

Activity Diagrams

212

11.3.16View Holiday Calendar use case

Name:
View Holiday details

Description:
Staff member can view a calendar with the holiday of all any of the staff
members. The staff member can also configure the number of weeks to view.

Assumptions
• None

Preconditions
• None.

Post-conditions
• None

Normal flow of events – Staff member successfully view the holiday
calendar for all staff.

• The staff member clicks on view holiday calendar.
• The system retrieves the holidays requested, approved and taken for all

staff members.
• The staff member views the details then click the close button.

Alternative flow of events – Staff member successfully view the holiday
calendar for another staff member.

• The staff member clicks on view holiday calendar.
• The staff member selects the name of another staff member then submits
• The system retrieves the holidays requested, approved and taken for all

staff members.
• The staff member views the details then click the close button

Exception flow of events – The system fails retrieve the staff holidays due to
an error

• The staff member clicks on view holiday calendar.
• The staff member selects the name of another staff member then submits
• The system displays a message indicating an error has occurred.

Outstanding issues
None

213

Activity Diagrams

214

11.3.17View / Update Tasks use case

Name:
View / Update Tasks

Description:
Staff member can view the tasks assigned to them by the system and can
update the task as set it as completed or delete it.

Assumptions
• None

Preconditions
• None.

Post-conditions
• After a staff member deletes a task, the task is removed from the system

Normal flow of events – Staff member successfully view their tasks.
• The staff member clicks on view tasks.
• The system retrieves all the tasks for the staff member.
• The staff member views the tasks then click the close button.

Alternative flow of events – Staff member successfully updates or delete
their task.

• The staff member clicks on view tasks.
• The system retrieves all the tasks for the staff member.
• The staff member selects one of the tasks and click ‘Set Complete’
• The system updates the task details and shows the task as completed.
• The staff member selects one of the tasks and click ‘Delete’
• The system deletes the task details and updates the list.
• The staff member then click the close button

Exception flow of events – The system fails retrieve the staff member tasks
due to an error

• The staff member clicks on view tasks.
• The system displays a message indicating an error has occurred.

Outstanding issues
None

215

Prototype

216

11.4 Appendix D – Requirement Analysis Models

11.4.1Staff management communication diagrams

The communication diagrams for the Add staff, Edit staff and View staff use
cases is shown below.

Figure 81. Add staff communication diagram

217

Figure 82. Edit Staff communication diagram

Figure 83. View Staff Details

218

11.4.2Staff management analysis class diagram

The staff management analysis class diagram was composed by combining the
classes derived from the above communication diagrams

Figure 84. Staff management analysis class diagram

11.4.3Authentication and Authorisation communication diagram

Figure 85. Login communication diagram

219

11.4.4Authentication and Authorisation sequence diagram

Figure 86. Authentication and Authorisation sequence diagram

11.4.5Authentication and Authorisation analysis class diagram

220

Figure 87. Authentication and Authorisation analysis class diagram

11.4.6Expenses management communication diagrams

Figure 88. Add/Edit expenses communication diagram

221

Figure 89. Find Expenses communication diagram

222

Figure 90. View Expenses communication diagram

223

11.4.7Expenses management analysis class diagram

Figure 91. Expenses management analysis class diagrams

224

11.4.8Expenses state diagram

As expenses are transitioned from one state to another a state diagram was
constructed to model these transitions as shown below:

Figure 92. Expenses management analysis class diagrams

225

11.4.9Holiday management communication diagrams

Figure 93. Approve/Cancel holiday communication diagram

Figure 94. Request/Cancel holiday communication diagram

226

Figure 95. View holiday calendar communication diagram

Figure 96. View Holiday details communication diagram

227

11.4.10Holiday management analysis class diagram

Figure 97. Holiday management analysis class diagram

228

11.5 Appendix E – Relational Database Model

Notations:
Bold Text Relational algebra elements
{} Comments

model OfficeMA
domains

TitleTypes = (Mr, Mrs, Sir, Miss) not allowed null
EmploymentTypes = (Contractor, Permanent) not allowed null
ExpensesStatusTypes = (Saved, Pending, Approved, Rejected, Paid) not

allowed null
HolidayStatusTypes = (Requested, Approved, Taken) not allowed null
GenderTypes = (Male, Female) not allowed null
RequiredString = string not allowed null
RequiredInteger = integer not allowed null

relation StaffMember
StaffId: integer
Dob: date not allowed null
EmailAddress: string
FirstName: RequiredString
LastName: RequiredString
Gender: GenderTypes
HomeTelNo: string
NiNumber: RequiredString
TaxCode: RequiredString
Title: TitleTypes
WorkTelNo: RequiredString
EmploymentDetailsId: string
Username: string
primary key StaffId
alternate key EmployementId not allowed null
alternate key Username
alternate key NiNumber not allowed null
{logs online as}
foreign key Username references User
{has}
foreign key EmploymentDetailsId references EmploymentDetails (Id) not
allowed null
{represent mandatory participation with respect to banks with}
constraint (project StaffMember over StaffId) difference (project
BankAccount over StaffId) is empty
{represent mandatory participation with respect to lives at}

229

constraint (project StaffMember over StaffId) difference (project
HomeAddress over StaffId) is empty

relation BankAccount
AccountNumber: RequiredString
BankName: RequiredString
SortCode: RequiredString
StaffId: integer
primary key StaffId
{banks with}
foreign key StaffId references StaffMember on delete cascade

relation HomeAddress
AddressLine1: RequiredString
AddressLine2: string
Country: RequiredString
County: string
HouseName: string
HouseNumber: string
Locality: string
PostCode: RequiredString
Town: RequiredString
StaffId: integer
primary key StaffId
{lives at}
foreign key StaffId references StaffMember on delete cascade
{ Either house name or house number or both should be supplied }
constraint ((HouseName is not null) or (HouseNumber is not null))

relation Task
Id: integer
Completed: boolean not allowed null
DateCreated: timestamp not allowed null
Description: string
TaskType: string
Title: string
StaffId: integer
primary key StaffId
{has}
foreign key StaffId references StaffMember not allowed null on delete
cascade

relation User
Username: string
CanApproveExpenses: boolean not allowed null
CanApproveHolidays: boolean not allowed null

230

Locked: boolean not allowed null
Password: RequiredString
PersonalPhoto: string
UnsuccessfulLoginAttempts: integer not allowed null
RoleId: integer
ExpensesApproverStaffId: integer default 0
HolidayApproverStaffId: integer default 0
primary key Username
{approves expenses for}
foreign key ExpensesApproverStaffId references StaffMember not
allowed null on delete set default
{approves holidays for}
foreign key HolidayApproverStaffId references StaffMember (StaffId) not
allowed null on delete set default
{has role}
foreign key RoleId references Role not allowed null
{reflect mandatory participation with respect to logs online as}
constraint (project Users over Username) difference (project
StaffMember over Username) is empty

relation EmploymentDetails
Id: integer
DateJoined: date not allowed null
DateLeft: date
EmploymentType: EmploymentTypes
HolidayEntitlement: integer
Salary: decimal
LineManagerStaffId: integer default 0
GradeId: RequiredInteger
primary key Id
{is assigned}
foreign key GradeId references Grade not allowed null
{has line manager}
foreign key LineManagerStaffId references StaffMember (StaffId) not
allowed null on delete set default
{reflect mandatory participation with respect to has}
constraint (project EmploymentDetails over Id) difference (project
StaffMember over EmploymentDetailsId) is empty

relation Grade
Id: Integer
Code: RequiredString
MaximumSalary: decimal
MinimumSalary: decimal
Name: string
primary key Id

231

alternate key Code not allowed null
alternate key Name not allowed null

relation EmploymentDetailsWorkStream
EmploymentDetailsId: integer
WorkStreamsId: integer
{being part of the primary key reflects the mandatory participation condition
with regards to perform work and works for}
primary key (EmploymentDetailsId, WorkStreamsId)
{perform work}
foreign key EmployementDetailsId references EmploymentDetails (Id) on
delete cascade
{works for}
foreign key WorkStreamsId references WorkStreams(Id) on delete
cascade

relation Project
Id: integer
Code: string
Description: string
Name: string
WorkStreamId: integer
primary key id
alternate key Code not allowed null
alternate key Name not allowed null
{contains}
foreign key WorkStreamId references WorkStream (id) not allowed null
on delete cascade

relation WorkStream
Id: integer
Description: string
Name: string
primary key Id
alternate key Name not allowed null

relation Role
RoleType: string
RoleId: integer
primary key RoleId
alternate key RoleType not allowed null

relation ViewableExpensesStatuses
RoleId: integer
StatusName: string
primary key (RoleId, StatusName)

232

{view expenses in}
foreign key RoleId references Role on delete cascade

relation ViewableStaffDetails
RoleId: integer
FieldName: string
primary key (RoleId, FieldName)
{view staff details in}
foreign key RoleId references Role on delete cascade

relation UpdateableStaffDetails
RoleId: integer
FieldName: string
primary key (RoleId, FieldName)
{update staff details in}
foreign key RoleId references Role on delete cascade

relation HolidayYear
Id: integer
CarryOver: integer
DaysInLieu: integer
Entitlement: RequiredInteger
HolidayYear: RequiredInteger
StaffId: RequiredInteger
primary key Id
{ Each StaffMember participate with the HolidayYear only once for each
value HolidayYear attribute }
alternate key (StaffId, HolidayYear)
{takes}
foreign key StaffId references StaffMember on delete cascade

relation Holiday
Id: integer
AfterNoon: boolean not allowed null
BookedDate: date not allowed null
FromYear: RequiredInteger
FullDay: boolean not allowed null
Status: HolidayStatusTypes
HolidayYearId: RequiredInteger
primary key Id
{Only one Holiday should be booked by any employee for the same day}
alternate key (BookedDate, HolidayYearId)
{has}
foreign key HolidayYearId references HolidayYear (Id) on delete cascade

relation Expenses

233

Id: integer
DatePaid: date
StatusLastModified: timestamp not allowed null
Status: ExpensesStatusTypes
ExpensesMonth: RequiredInteger
ExpensesWeek: RequiredInteger
ExpensesYear: RequiredInteger
StaffId: RequiredInteger
primary key Id
{Each StaffMember participate with the Expenses entity only once for each
value of ExpensesMonth, ExpensesWeek and ExpensesYear}
alternate key (StaffId, ExpensesYear, ExpensesMonth, ExpensesWeek)
{books}
foreign key StaffId references StaffMember on delete cascade

relation ExpensesItem
Id: integer
Amount: decimal not allowed null
Description: string
ExpensesDate: date not allowed null
Miles: decimal
Mnemonic: string
Rejected: boolean not allowed null
RejectionReason: string
ExpensesCategoryId: RequiredInteger
ExpensesId: RequiredInteger
primary key Id
{booked against}
foreign key ExpensesCategoryId references ExpensesCategory
{consist of}
foreign key ExpensesId reference Expenses on delete cascade

relation ExpensesCategory
Id: integer
Category: RequiredString
HasMileage: boolean not allowed null
primary key Id
alternate key Category

relation ExpensesMnemonic
Name: RequiredString
Amount: decimal
Mileage: decimal
ExpensesCategoryId: RequiredInteger
Username: RequiredString
primary key Name

234

{stored for}
foreign key ExpensesCategoryId references ExpensesCategory(Id)
{entered}
foreign key Username references User on delete cascade
{ExpensesMnemonic must have an amount or mileage or both}
constraint ((Amount is not null) or (Mileage is not null))

relation MileageCost
Id: integer
Cost: decimal not allowed null
LowerLimit: decimal not allowed null
UpperLimit: decimal not allowed null
ExpensesCategoryId: RequiredInteger
primary key Id
{has}
foreign key ExpensesCategoryId references ExpensesCategory(Id) on
delete cascade

235

11.6 Appendix F – Physical database schema

--
-- Office Managment Application PostgreSQL schema definitions --
-- Author: Omer Dawelbeit

--
--

-- Drop all the Foreign keys
ALTER TABLE staff_member DROP CONSTRAINT fk_staff_member_users;
ALTER TABLE staff_member DROP CONSTRAINT
fk_staff_member_employment_details;
ALTER TABLE bank_account DROP CONSTRAINT fk_bank_account_staff_member;
ALTER TABLE home_address DROP CONSTRAINT fk_home_address_staff_member;
ALTER TABLE task DROP CONSTRAINT fk_task_staff_member;
ALTER TABLE users DROP CONSTRAINT fk_users_roles;
ALTER TABLE users DROP CONSTRAINT fk_users_staff_member_1;
ALTER TABLE users DROP CONSTRAINT fk_users_staff_member_2;
ALTER TABLE employment_details DROP CONSTRAINT
fk_employment_details_staff_member;
ALTER TABLE employment_details DROP CONSTRAINT
fk_employment_details_grade;
ALTER TABLE employment_details_workstream DROP CONSTRAINT
fk_employment_details_workstream_workstream;
ALTER TABLE employment_details_workstream DROP CONSTRAINT
fk_employment_details_workstream_employment_details;
ALTER TABLE project DROP CONSTRAINT fk_project_workstream;
ALTER TABLE role_update_staff_details DROP CONSTRAINT
fk_update_staff_details_role;
ALTER TABLE role_view_staff_details DROP CONSTRAINT
fk_view_staff_details_role;
ALTER TABLE role_allowed_expenses_statuses DROP CONSTRAINT
fk_expenses_statuses_role;
ALTER TABLE holiday_year DROP CONSTRAINT fk_holiday_year_staff_member;
ALTER TABLE holiday DROP CONSTRAINT fk_holiday_holiday_year;
ALTER TABLE expenses DROP CONSTRAINT fk_expenses_staff_member;
ALTER TABLE expenses_item DROP CONSTRAINT fk_expenses_item_expenses;
ALTER TABLE expenses_item DROP CONSTRAINT
fk_expenses_item_expeneses_category;
ALTER TABLE expenses_item DROP CONSTRAINT fk_expenses_item_project;
ALTER TABLE expenses_mnemonic DROP CONSTRAINT
fk_expenses_mnemonic_expeneses_category;
ALTER TABLE expenses_mnemonic DROP CONSTRAINT
fk_expenses_mnemonic_users;
ALTER TABLE mileage_cost DROP CONSTRAINT
fk_mileage_cost_expenses_category;

-- Drop all the primary keys
ALTER TABLE mileage_cost DROP CONSTRAINT mileage_cost_pkey;
ALTER TABLE expenses DROP CONSTRAINT expenses_pkey;
ALTER TABLE staff_member DROP CONSTRAINT staff_member_pkey;
ALTER TABLE employment_details_workstream DROP CONSTRAINT
employment_details_workstream_pkey;
ALTER TABLE users DROP CONSTRAINT users_pkey;
ALTER TABLE bank_account DROP CONSTRAINT bank_account_pkey;
ALTER TABLE expenses_mnemonic DROP CONSTRAINT expenses_mnemonic_pkey;

236

ALTER TABLE workstream DROP CONSTRAINT workstream_pkey;
ALTER TABLE roles DROP CONSTRAINT roles_pkey;
ALTER TABLE expenses_item DROP CONSTRAINT expenses_item_pkey;
ALTER TABLE project DROP CONSTRAINT project_pkey;
ALTER TABLE grade DROP CONSTRAINT grade_pkey;
ALTER TABLE expenses_category DROP CONSTRAINT expenses_category_pkey;
ALTER TABLE task DROP CONSTRAINT task_pkey;
ALTER TABLE home_address DROP CONSTRAINT home_address_pkey;
ALTER TABLE employment_details DROP CONSTRAINT employment_details_pkey;
ALTER TABLE holiday_year DROP CONSTRAINT holiday_year_pkey;
ALTER TABLE holiday DROP CONSTRAINT holiday_pkey;
ALTER TABLE role_view_staff_details DROP CONSTRAINT
role_view_staff_details_pkey ;
ALTER TABLE role_update_staff_details DROP CONSTRAINT
role_update_staff_details_pkey;
ALTER TABLE role_allowed_expenses_statuses DROP CONSTRAINT
role_allowed_expenses_statuses_pkey;

-- Drop all the alternate keys
ALTER TABLE staff_member DROP CONSTRAINT
staff_member_employmentdetails_id_key;
ALTER TABLE staff_member DROP CONSTRAINT staff_member_username_key;
ALTER TABLE staff_member DROP CONSTRAINT staff_member_ni_number_key;
ALTER TABLE grade DROP CONSTRAINT grade_code_key;
ALTER TABLE grade DROP CONSTRAINT grade_name_key;
ALTER TABLE project DROP CONSTRAINT project_code_key;
ALTER TABLE project DROP CONSTRAINT project_name_key;
ALTER TABLE workstream DROP CONSTRAINT workstream_name_key;
ALTER TABLE roles DROP CONSTRAINT roles_role_type_key;
ALTER TABLE holiday_year DROP CONSTRAINT holiday_year_staff_id_key;
ALTER TABLE holiday DROP CONSTRAINT holiday_holiday_year_key;
ALTER TABLE expenses DROP CONSTRAINT expenses_staff_id_key;
ALTER TABLE expenses_category DROP CONSTRAINT
expenses_category_category_key;

-- Drop the check constraints
ALTER TABLE home_address DROP CONSTRAINT home_address_check;
ALTER TABLE expenses_mnemonic DROP CONSTRAINT expenses_mnemonic_check;
ALTER TABLE expenses_item DROP CONSTRAINT expenses_item_check;
-- Drop the triggers and functions
DROP TRIGGER mileage_cost_check ON mileage_cost;
DROP FUNCTION mileage_cost_check();
DROP TRIGGER users_check ON staff_member;
DROP FUNCTION users_check();
-- Drop all the tables
DROP TABLE roles;
DROP TABLE grade;
DROP TABLE expenses_mnemonic;
DROP TABLE holiday_year;
DROP TABLE project;
DROP TABLE expenses_item;
DROP TABLE role_allowed_expenses_statuses;
DROP TABLE users;
DROP TABLE expenses_category;

237

DROP TABLE role_update_staff_details;
DROP TABLE mileage_cost;
DROP TABLE task;
DROP TABLE holiday;
DROP TABLE employment_details;
DROP TABLE workstream;
DROP TABLE home_address;
DROP TABLE expenses;
DROP TABLE employment_details_workstream;
DROP TABLE role_view_staff_details;
DROP TABLE staff_member;
DROP TABLE bank_account;
-- Drop the sequences
DROP SEQUENCE hibernate_sequence;
-- Drop the domains
DROP DOMAIN titletypes;
DROP DOMAIN employmenttypes;
DROP DOMAIN expensesstatustypes;
DROP DOMAIN holidaystatustypes;
DROP DOMAIN gendertypes;
-- Schema domain definitions
CREATE DOMAIN titletypes
 AS VARCHAR(10) NOT NULL
 CHECK (VALUE IN ('Mr', 'Mrs', 'Sir', 'Miss'));
CREATE DOMAIN employmenttypes
 AS VARCHAR(10) NOT NULL
 CHECK (VALUE IN ('Contractor', 'Permanent'));
CREATE DOMAIN expensesstatustypes
 AS VARCHAR(10) NOT NULL
 CHECK (VALUE IN ('Saved', 'Pending', 'Approved', 'Rejected', 'Paid'));
CREATE DOMAIN holidaystatustypes
 AS VARCHAR(10) NOT NULL
 CHECK (VALUE IN ('Requested', 'Approved', 'Taken'));
CREATE DOMAIN gendertypes
 AS VARCHAR(10) NOT NULL
 CHECK (VALUE IN ('Male', 'Female'));
-- Hibernate sequence used to auto-generate surrogate primary keys
CREATE SEQUENCE hibernate_sequence
 INCREMENT 1
 MINVALUE 10
 MAXVALUE 9223372036854775807
 START 71
 CACHE 1;

-- Table definition statements
CREATE TABLE staff_member (

staff_id INTEGER NOT NULL,
dob DATE NOT NULL,
emailaddress VARCHAR(255),

238

first_name VARCHAR(255) NOT NULL,
gender gendertypes,
hometelno VARCHAR(255),
last_name VARCHAR(255) NOT NULL,
ni_number VARCHAR(255) NOT NULL,
tax_code VARCHAR(255) NOT NULL,
title titletypes,
worktelno VARCHAR(255) NOT NULL,
username VARCHAR(255),
employmentdetails_id INTEGER NOT NULL

);

CREATE TABLE bank_account (
account_number VARCHAR(255) NOT NULL,
bank_name VARCHAR(255) NOT NULL,
sort_code VARCHAR(255) NOT NULL,
staff_id INTEGER NOT NULL

);

CREATE TABLE home_address (
address_line1 VARCHAR(255) NOT NULL,
address_line2 VARCHAR(255),
country VARCHAR(8) NOT NULL,
county VARCHAR(255),
house_name VARCHAR(255),
house_number VARCHAR(255),
locality VARCHAR(255),
post_code VARCHAR(255) NOT NULL,
town VARCHAR(255) NOT NULL,
staff_id INTEGER NOT NULL

);

CREATE TABLE task (
id INTEGER NOT NULL,
completed BOOL NOT NULL,
datecreated TIMESTAMP NOT NULL,
description VARCHAR(255),
tasktype VARCHAR(255),
title VARCHAR(255),
staff_id INTEGER NOT NULL

);

CREATE TABLE users (
username VARCHAR(255) NOT NULL,
canapproveexpenses BOOL NOT NULL,
canapproveholidays BOOL NOT NULL,
locked BOOL NOT NULL,
password VARCHAR(255) NOT NULL,
personalphoto VARCHAR(255),
unsuccessfulloginattempts INTEGER NOT NULL,
role_id INTEGER NOT NULL,
expensesapprover_staff_id INTEGER NOT NULL DEFAULT 1,
holidayapprover_staff_id INTEGER NOT NULL DEFAULT 1

);

CREATE TABLE employment_details (
id INTEGER NOT NULL,

239

datejoined DATE NOT NULL,
dateleft DATE,
employmenttype employmenttypes,
holidayentitlement INTEGER,
salary NUMERIC(19 , 2),
grade_id INTEGER NOT NULL,
linemanager_staff_id INTEGER NOT NULL DEFAULT 1

);

CREATE TABLE grade (
id INTEGER NOT NULL,
code VARCHAR(255) NOT NULL,
maximumsalary NUMERIC(19 , 2),
minimumsalary NUMERIC(19 , 2),
name VARCHAR(255) NOT NULL

);

CREATE TABLE employment_details_workstream (
employment_details_id INTEGER NOT NULL,
workstreams_id INTEGER NOT NULL

);

CREATE TABLE project (
id INTEGER NOT NULL,
code VARCHAR(255) NOT NULL,
description VARCHAR(255),
name VARCHAR(255) NOT NULL,
workstream_id INTEGER NOT NULL

);

CREATE TABLE workstream (
id INTEGER NOT NULL,
description VARCHAR(255),
name VARCHAR(255) NOT NULL

);

CREATE TABLE roles (
role_type VARCHAR(31) NOT NULL,
role_id INTEGER NOT NULL

);

CREATE TABLE role_view_staff_details (
role_id INTEGER NOT NULL,
field_name VARCHAR(255)

);

CREATE TABLE role_update_staff_details (
role_id INTEGER NOT NULL,
field_name VARCHAR(255)

);

CREATE TABLE role_allowed_expenses_statuses (
role_id INTEGER NOT NULL,
status_name VARCHAR(255)

);

CREATE TABLE holiday_year (

240

id INTEGER NOT NULL,
carry_over INTEGER,
days_in_lieu INTEGER,
entitlement INTEGER NOT NULL,
holiday_year INTEGER NOT NULL,
staff_id INTEGER NOT NULL

);

CREATE TABLE holiday (
id INTEGER NOT NULL,
after_noon BOOL NOT NULL,
booked_date DATE NOT NULL,
from_year INTEGER NOT NULL,
full_day BOOL NOT NULL,
status holidaystatustypes,
holiday_year_id INTEGER NOT NULL

);

CREATE TABLE expenses (
id INTEGER NOT NULL,
date_paid DATE,
status_last_modified TIMESTAMP NOT NULL,
status expensesstatustypes,
expenses_month INTEGER NOT NULL,
expenses_week INTEGER NOT NULL,
expenses_year INTEGER NOT NULL,
staff_id INTEGER NOT NULL

);

CREATE TABLE expenses_item (
id INTEGER NOT NULL,
amount NUMERIC(19 , 2),
description VARCHAR(255),
expense_date DATE NOT NULL,
miles NUMERIC(19 , 2),
mnemonic VARCHAR(255),
rejected BOOL NOT NULL,
rejection_reason VARCHAR(255),
project_id INTEGER,
expeneses_category_id INTEGER NOT NULL,
expenses_id INTEGER NOT NULL

);

CREATE TABLE expenses_category (
id INTEGER NOT NULL,
expenses_type VARCHAR(255) NOT NULL,
hasmileage BOOL NOT NULL

);

CREATE TABLE expenses_mnemonic (
name VARCHAR(255) NOT NULL,
amount NUMERIC(19 , 2),
mileage NUMERIC(19 , 2),
expeneses_category_id INTEGER NOT NULL,
username VARCHAR(255) NOT NULL

);

241

CREATE TABLE mileage_cost (
id INTEGER NOT NULL,
cost NUMERIC(19 , 2) NOT NULL,
lower_limit NUMERIC(19 , 2) NOT NULL,
upper_limit NUMERIC(19 , 2) NOT NULL,
expenses_category_id INTEGER

);

-- primary key constraints
ALTER TABLE mileage_cost ADD CONSTRAINT mileage_cost_pkey PRIMARY KEY
(id);
ALTER TABLE expenses ADD CONSTRAINT expenses_pkey PRIMARY KEY (id);
ALTER TABLE staff_member ADD CONSTRAINT staff_member_pkey PRIMARY KEY
(staff_id);
ALTER TABLE employment_details_workstream ADD CONSTRAINT
employment_details_workstream_pkey PRIMARY KEY (employment_details_id,
workstreams_id);
ALTER TABLE users ADD CONSTRAINT users_pkey PRIMARY KEY (username);
ALTER TABLE bank_account ADD CONSTRAINT bank_account_pkey PRIMARY KEY
(staff_id);
ALTER TABLE expenses_mnemonic ADD CONSTRAINT expenses_mnemonic_pkey
PRIMARY KEY (name);
ALTER TABLE workstream ADD CONSTRAINT workstream_pkey PRIMARY KEY (id);
ALTER TABLE roles ADD CONSTRAINT roles_pkey PRIMARY KEY (role_id);
ALTER TABLE expenses_item ADD CONSTRAINT expenses_item_pkey PRIMARY KEY
(id);
ALTER TABLE project ADD CONSTRAINT project_pkey PRIMARY KEY (id);
ALTER TABLE grade ADD CONSTRAINT grade_pkey PRIMARY KEY (id);
ALTER TABLE expenses_category ADD CONSTRAINT expenses_category_pkey
PRIMARY KEY (id);
ALTER TABLE task ADD CONSTRAINT task_pkey PRIMARY KEY (id);
ALTER TABLE home_address ADD CONSTRAINT home_address_pkey PRIMARY KEY
(staff_id);
ALTER TABLE employment_details ADD CONSTRAINT employment_details_pkey
PRIMARY KEY (id);
ALTER TABLE holiday_year ADD CONSTRAINT holiday_year_pkey PRIMARY KEY
(id);
ALTER TABLE holiday ADD CONSTRAINT holiday_pkey PRIMARY KEY (id);
ALTER TABLE role_view_staff_details ADD CONSTRAINT
role_view_staff_details_pkey PRIMARY KEY (role_id, field_name);
ALTER TABLE role_update_staff_details ADD CONSTRAINT
role_update_staff_details_pkey PRIMARY KEY (role_id, field_name);
ALTER TABLE role_allowed_expenses_statuses ADD CONSTRAINT
role_allowed_expenses_statuses_pkey PRIMARY KEY (role_id, status_name);
-- Alternate key constraints
ALTER TABLE staff_member ADD CONSTRAINT
staff_member_employmentdetails_id_key UNIQUE (employmentdetails_id);
ALTER TABLE staff_member ADD CONSTRAINT staff_member_username_key UNIQUE
(username);
ALTER TABLE staff_member ADD CONSTRAINT staff_member_ni_number_key
UNIQUE (ni_number);
ALTER TABLE grade ADD CONSTRAINT grade_code_key UNIQUE (code);
ALTER TABLE grade ADD CONSTRAINT grade_name_key UNIQUE (name);
ALTER TABLE project ADD CONSTRAINT project_code_key UNIQUE (code);
ALTER TABLE project ADD CONSTRAINT project_name_key UNIQUE (name);
ALTER TABLE workstream ADD CONSTRAINT workstream_name_key UNIQUE (name);

242

ALTER TABLE roles ADD CONSTRAINT roles_role_type_key UNIQUE (role_type);
ALTER TABLE holiday_year ADD CONSTRAINT holiday_year_staff_id_key UNIQUE
(staff_id, holiday_year);
ALTER TABLE holiday ADD CONSTRAINT holiday_holiday_year_key UNIQUE
(holiday_year_id, booked_date);
ALTER TABLE expenses ADD CONSTRAINT expenses_staff_id_key UNIQUE
(staff_id, expenses_year, expenses_month, expenses_week);
ALTER TABLE expenses_category ADD CONSTRAINT
expenses_category_category_key UNIQUE (expenses_type);
-- Create default data before creating referential constraints
-- Default Grades
INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(1, 'SC', 52000.00, 42000.00, 'Senior Consultant');
INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(2, 'C', 41999.00, 32000.00, 'Consultant');
INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(3, 'PC', 62000.00, 52000.00, 'Principal Consultant');

-- Default Roles
INSERT INTO roles (role_type, role_id) VALUES ('Accountant', 1);
INSERT INTO roles (role_type, role_id) VALUES ('Administrator', 2);
INSERT INTO roles (role_type, role_id) VALUES ('RegularStaff', 3);
-- Default Administrator (admin/officema)
INSERT INTO staff_member (staff_id, dob, emailaddress, first_name,
gender, hometelno, last_name, ni_number, tax_code, title,

worktelno, username, employmentdetails_id)
VALUES (1, '2008-01-20', NULL, 'Admin', 'Male', NULL, 'Admin',

'XXXXXXX', 'XXX', 'Mr', '0000000000', 'admin', 1);
INSERT INTO employment_details (id, datejoined, dateleft,
employmenttype, salary, linemanager_staff_id, grade_id,
holidayentitlement)

VALUES (1, '2008-01-20', NULL, 'Permanent', 0.00, 1, 1, 0);
INSERT INTO users (username, canapproveexpenses, canapproveholidays,
locked, "password", personalphoto, unsuccessfulloginattempts,

holidayapprover_staff_id, expensesapprover_staff_id, role_id)
VALUES ('admin', true, true, false, 'sxd7SMla0HyxGCt2bvF3jw==',

NULL, 0, 1, 1, 2);
INSERT INTO bank_account (account_number, bank_name, sort_code,
staff_id) VALUES ('AC5Ivq3PGmMcx0M20FCpFA==',
'zN3paiWMI9tZwC9sMEwpwg==', 'yewjnIn286k=', 1);
INSERT INTO home_address (address_line1, address_line2, country, county,
house_name, house_number, locality, post_code, town, staff_id) VALUES
('Some Road', NULL, 'UK', NULL, NULL, '1', NULL, 'AA1 1AA', 'Town', 1);
-- Foreign key constraints
ALTER TABLE staff_member ADD CONSTRAINT fk_staff_member_users FOREIGN
KEY (username) REFERENCES users (username);
ALTER TABLE staff_member ADD CONSTRAINT
fk_staff_member_employment_details FOREIGN KEY (employmentdetails_id)
REFERENCES employment_details (id);
ALTER TABLE bank_account ADD CONSTRAINT fk_bank_account_staff_member
FOREIGN KEY (staff_id) REFERENCES staff_member (staff_id) ON DELETE
CASCADE;
ALTER TABLE home_address ADD CONSTRAINT fk_home_address_staff_member
FOREIGN KEY (staff_id) REFERENCES staff_member (staff_id) ON DELETE

243

CASCADE;
ALTER TABLE task ADD CONSTRAINT fk_task_staff_member FOREIGN KEY
(staff_id) REFERENCES staff_member (staff_id) ON DELETE CASCADE;
ALTER TABLE users ADD CONSTRAINT fk_users_roles FOREIGN KEY (role_id)
REFERENCES roles (role_id);
ALTER TABLE users ADD CONSTRAINT fk_users_staff_member_1 FOREIGN KEY
(holidayapprover_staff_id) REFERENCES staff_member (staff_id) ON DELETE
SET DEFAULT;
ALTER TABLE users ADD CONSTRAINT fk_users_staff_member_2 FOREIGN KEY
(expensesapprover_staff_id) REFERENCES staff_member (staff_id) ON DELETE
SET DEFAULT;
ALTER TABLE employment_details ADD CONSTRAINT
fk_employment_details_staff_member FOREIGN KEY (linemanager_staff_id)
REFERENCES staff_member (staff_id) ON DELETE SET DEFAULT;
ALTER TABLE employment_details ADD CONSTRAINT
fk_employment_details_grade FOREIGN KEY (grade_id) REFERENCES grade
(id);
ALTER TABLE employment_details_workstream ADD CONSTRAINT
fk_employment_details_workstream_workstream FOREIGN KEY (workstreams_id)
REFERENCES workstream (id) ON DELETE CASCADE;
ALTER TABLE employment_details_workstream ADD CONSTRAINT
fk_employment_details_workstream_employment_details FOREIGN KEY
(employment_details_id) REFERENCES employment_details (id) ON DELETE
CASCADE;
ALTER TABLE project ADD CONSTRAINT fk_project_workstream FOREIGN KEY
(workstream_id) REFERENCES workstream (id) ON DELETE CASCADE;
ALTER TABLE role_update_staff_details ADD CONSTRAINT
fk_update_staff_details_role FOREIGN KEY (role_id) REFERENCES roles
(role_id) ON DELETE CASCADE;
ALTER TABLE role_view_staff_details ADD CONSTRAINT
fk_view_staff_details_role FOREIGN KEY (role_id) REFERENCES roles
(role_id) ON DELETE CASCADE;
ALTER TABLE role_allowed_expenses_statuses ADD CONSTRAINT
fk_expenses_statuses_role FOREIGN KEY (role_id) REFERENCES roles
(role_id) ON DELETE CASCADE;
ALTER TABLE holiday_year ADD CONSTRAINT fk_holiday_year_staff_member
FOREIGN KEY (staff_id) REFERENCES staff_member (staff_id) ON DELETE
CASCADE;
ALTER TABLE holiday ADD CONSTRAINT fk_holiday_holiday_year FOREIGN KEY
(holiday_year_id) REFERENCES holiday_year (id) ON DELETE CASCADE;
ALTER TABLE expenses ADD CONSTRAINT fk_expenses_staff_member FOREIGN KEY
(staff_id) REFERENCES staff_member (staff_id) ON DELETE CASCADE;
ALTER TABLE expenses_item ADD CONSTRAINT fk_expenses_item_expenses
FOREIGN KEY (expenses_id) REFERENCES expenses (id) ON DELETE CASCADE;
ALTER TABLE expenses_item ADD CONSTRAINT
fk_expenses_item_expeneses_category FOREIGN KEY (expeneses_category_id)
REFERENCES expenses_category (id);
ALTER TABLE expenses_item ADD CONSTRAINT fk_expenses_item_project
FOREIGN KEY (project_id) REFERENCES project (id);
ALTER TABLE expenses_mnemonic ADD CONSTRAINT
fk_expenses_mnemonic_expeneses_category FOREIGN KEY
(expeneses_category_id) REFERENCES expenses_category (id);
ALTER TABLE expenses_mnemonic ADD CONSTRAINT fk_expenses_mnemonic_users
FOREIGN KEY (username) REFERENCES users (username) ON DELETE CASCADE;
ALTER TABLE mileage_cost ADD CONSTRAINT
fk_mileage_cost_expenses_category FOREIGN KEY (expenses_category_id)
REFERENCES expenses_category (id) ON DELETE CASCADE;

244

-- Check constraints definitions
ALTER TABLE home_address ADD CONSTRAINT home_address_check CHECK
(house_name IS NOT NULL OR house_number IS NOT NULL);
ALTER TABLE expenses_mnemonic ADD CONSTRAINT expenses_mnemonic_check
CHECK (mileage IS NOT NULL OR amount IS NOT NULL);
ALTER TABLE expenses_item ADD CONSTRAINT expenses_item_check CHECK
(miles IS NOT NULL OR amount IS NOT NULL);
-- Triggers and functions definitions
CREATE FUNCTION mileage_cost_check() RETURNS trigger AS
$mileage_cost_check$
BEGIN
 IF (TG_OP = 'UPDATE') THEN

IF EXISTS (SELECT * FROM mileage_cost AS MC
WHERE (MC.lower_limit <= NEW.lower_limit) AND
 (MC.upper_limit >= NEW.lower_limit) AND
 (MC.id != NEW.id) AND

 (MC.expenses_category_id =
NEW.expenses_category_id)
)

THEN
RAISE EXCEPTION '% lower_limit already exists',

NEW.lower_limit;
END IF;
IF EXISTS (SELECT * FROM mileage_cost AS MC

WHERE (MC.lower_limit <= NEW.upper_limit) AND
 (MC.upper_limit >= NEW.upper_limit) AND
 (MC.id != NEW.id) AND

 (MC.expenses_category_id =
NEW.expenses_category_id)
)

THEN
RAISE EXCEPTION '% upper_limit already exists',

NEW.upper_limit;
END IF;

 ELSIF (TG_OP = 'INSERT') THEN
IF EXISTS (SELECT * FROM mileage_cost AS MC

WHERE (MC.lower_limit <= NEW.lower_limit) AND
 (MC.upper_limit >= NEW.lower_limit) AND

 (MC.expenses_category_id =
NEW.expenses_category_id)
)

THEN
RAISE EXCEPTION '% lower_limit already exists',

NEW.lower_limit;
END IF;
IF EXISTS (SELECT * FROM mileage_cost AS MC

WHERE (MC.lower_limit <= NEW.upper_limit) AND
 (MC.upper_limit >= NEW.upper_limit) AND

 (MC.expenses_category_id =
NEW.expenses_category_id)
)

THEN
RAISE EXCEPTION '% upper_limit already exists',

245

NEW.upper_limit;
END IF;

 END IF;
 RETURN new;
 END;
$mileage_cost_check$ LANGUAGE plpgsql;

CREATE FUNCTION users_check() RETURNS trigger AS $users_check$
BEGIN
 IF (TG_OP = 'UPDATE') THEN

IF ((NEW.username IS NULL) AND EXISTS (SELECT * FROM users WHERE
(users.username = OLD.username)))

THEN
DELETE FROM users WHERE (users.username = OLD.username);

END IF;
 END IF;
 RETURN new;
END;
$users_check$ LANGUAGE plpgsql;

CREATE TRIGGER mileage_cost_check
 BEFORE INSERT OR UPDATE ON mileage_cost
 FOR EACH ROW
 EXECUTE PROCEDURE mileage_cost_check();
CREATE TRIGGER users_check
 AFTER UPDATE ON staff_member
 FOR EACH ROW
 EXECUTE PROCEDURE users_check();

246

11.7 Appendix G – Sample ORM SQL queries

The queries below are used to load the object graph of a StaffMember instance

select staffmembe0_.staff_id as staff1_12_, staffmembe0_.dob as dob12_,
staffmembe0_.emailAddress as emailAdd3_12_,
staffmembe0_.employmentDetails_id as employm13_12_,
staffmembe0_.first_name as first4_12_, staffmembe0_.gender as gender12_,
staffmembe0_.homeTelNo as homeTelNo12_, staffmembe0_.last_name as
last7_12_, staffmembe0_.ni_number as ni8_12_, staffmembe0_.tax_code as
tax9_12_, staffmembe0_.title as title12_, staffmembe0_.username as
username12_, staffmembe0_.workTelNo as workTelNo12_,
staffmembe0_1_.account_number as account1_14_, staffmembe0_1_.bank_name
as bank2_14_, staffmembe0_1_.sort_code as sort3_14_,
staffmembe0_2_.address_line1 as address1_13_,
staffmembe0_2_.address_line2 as address2_13_, staffmembe0_2_.country as
country13_, staffmembe0_2_.county as county13_,
staffmembe0_2_.house_name as house5_13_, staffmembe0_2_.house_number as
house6_13_, staffmembe0_2_.locality as locality13_,
staffmembe0_2_.post_code as post8_13_, staffmembe0_2_.town as town13_

from staff_member staffmembe0_
left outer join bank_account staffmembe0_1_ on

staffmembe0_.staff_id=staffmembe0_1_.staff_id
left outer join home_address staffmembe0_2_ on

staffmembe0_.staff_id=staffmembe0_2_.staff_id
where staffmembe0_.username=?

select employment0_.id as id9_12_, employment0_.dateJoined as
dateJoined9_12_, employment0_.dateLeft as dateLeft9_12_,
employment0_.employmentType as employme4_9_12_, employment0_.grade_id as
grade7_9_12_, employment0_.holidayEntitlement as holidayE5_9_12_,
employment0_.lineManager_staff_id as lineMana8_9_12_,
employment0_.salary as salary9_12_, grade1_.id as id10_0_, grade1_.code
as code10_0_, grade1_.maximumSalary as maximumS3_10_0_,
grade1_.minimumSalary as minimumS4_10_0_, grade1_.name as name10_0_,
staffmembe2_.staff_id as staff1_12_1_, staffmembe2_.dob as dob12_1_,
staffmembe2_.emailAddress as emailAdd3_12_1_,
staffmembe2_.employmentDetails_id as employm13_12_1_,
staffmembe2_.first_name as first4_12_1_, staffmembe2_.gender as
gender12_1_, staffmembe2_.homeTelNo as homeTelNo12_1_,
staffmembe2_.last_name as last7_12_1_, staffmembe2_.ni_number as
ni8_12_1_, staffmembe2_.tax_code as tax9_12_1_, staffmembe2_.title as
title12_1_, staffmembe2_.username as username12_1_,
staffmembe2_.workTelNo as workTelNo12_1_, staffmembe2_1_.account_number
as account1_14_1_, staffmembe2_1_.bank_name as bank2_14_1_,
staffmembe2_1_.sort_code as sort3_14_1_, staffmembe2_2_.address_line1 as
address1_13_1_, staffmembe2_2_.address_line2 as address2_13_1_,
staffmembe2_2_.country as country13_1_, staffmembe2_2_.county as
county13_1_, staffmembe2_2_.house_name as house5_13_1_,
staffmembe2_2_.house_number as house6_13_1_, staffmembe2_2_.locality as
locality13_1_, staffmembe2_2_.post_code as post8_13_1_,
staffmembe2_2_.town as town13_1_, employment3_.id as id9_2_,
employment3_.dateJoined as dateJoined9_2_, employment3_.dateLeft as
dateLeft9_2_, employment3_.employmentType as employme4_9_2_,
employment3_.grade_id as grade7_9_2_, employment3_.holidayEntitlement as

247

holidayE5_9_2_, employment3_.lineManager_staff_id as lineMana8_9_2_,
employment3_.salary as salary9_2_, workstream4_.employment_details_id as
employment1_14_, workstream5_.id as workStre2_14_, workstream5_.id as
id1_3_, workstream5_.description as descript2_1_3_, workstream5_.name as
name1_3_, projects6_.workstream_id as workstream5_15_, projects6_.id as
id15_, projects6_.id as id0_4_, projects6_.code as code0_4_,
projects6_.description as descript3_0_4_, projects6_.name as name0_4_,
user7_.username as username15_5_, user7_.canApproveExpenses as
canAppro2_15_5_, user7_.canApproveHolidays as canAppro3_15_5_,
user7_.expensesApprover_staff_id as expense10_15_5_,
user7_.holidayApprover_staff_id as holidayA8_15_5_, user7_.locked as
locked15_5_, user7_.password as password15_5_, user7_.personalPhoto as
personal6_15_5_, user7_.role_id as role9_15_5_,
user7_.unSuccessfulLoginAttempts as unSucces7_15_5_,
staffmembe8_.staff_id as staff1_12_6_, staffmembe8_.dob as dob12_6_,
staffmembe8_.emailAddress as emailAdd3_12_6_,
staffmembe8_.employmentDetails_id as employm13_12_6_,
staffmembe8_.first_name as first4_12_6_, staffmembe8_.gender as
gender12_6_, staffmembe8_.homeTelNo as homeTelNo12_6_,
staffmembe8_.last_name as last7_12_6_, staffmembe8_.ni_number as
ni8_12_6_, staffmembe8_.tax_code as tax9_12_6_, staffmembe8_.title as
title12_6_, staffmembe8_.username as username12_6_,
staffmembe8_.workTelNo as workTelNo12_6_, staffmembe8_1_.account_number
as account1_14_6_, staffmembe8_1_.bank_name as bank2_14_6_,
staffmembe8_1_.sort_code as sort3_14_6_, staffmembe8_2_.address_line1 as
address1_13_6_, staffmembe8_2_.address_line2 as address2_13_6_,
staffmembe8_2_.country as country13_6_, staffmembe8_2_.county as
county13_6_, staffmembe8_2_.house_name as house5_13_6_,
staffmembe8_2_.house_number as house6_13_6_, staffmembe8_2_.locality as
locality13_6_, staffmembe8_2_.post_code as post8_13_6_,
staffmembe8_2_.town as town13_6_, expensesmn9_.username as username16_,
expensesmn9_.name as name16_, expensesmn9_.name as name5_7_,
expensesmn9_.amount as amount5_7_, expensesmn9_.expeneses_category_id as
expeneses4_5_7_, expensesmn9_.mileage as mileage5_7_, expensesca10_.id
as id3_8_, expensesca10_.category as category3_8_,
expensesca10_.hasMileage as hasMileage3_8_,
mileagecos11_.expenses_category_id as expenses5_17_, mileagecos11_.id as
id17_, mileagecos11_.id as id6_9_, mileagecos11_.cost as cost6_9_,
mileagecos11_.lower_limit as lower3_6_9_, mileagecos11_.upper_limit as
upper4_6_9_, staffmembe12_.staff_id as staff1_12_10_, staffmembe12_.dob
as dob12_10_, staffmembe12_.emailAddress as emailAdd3_12_10_,
staffmembe12_.employmentDetails_id as employm13_12_10_,
staffmembe12_.first_name as first4_12_10_, staffmembe12_.gender as
gender12_10_, staffmembe12_.homeTelNo as homeTelNo12_10_,
staffmembe12_.last_name as last7_12_10_, staffmembe12_.ni_number as
ni8_12_10_, staffmembe12_.tax_code as tax9_12_10_, staffmembe12_.title
as title12_10_, staffmembe12_.username as username12_10_,
staffmembe12_.workTelNo as workTelNo12_10_,
staffmembe12_1_.account_number as account1_14_10_,
staffmembe12_1_.bank_name as bank2_14_10_, staffmembe12_1_.sort_code as
sort3_14_10_, staffmembe12_2_.address_line1 as address1_13_10_,
staffmembe12_2_.address_line2 as address2_13_10_,
staffmembe12_2_.country as country13_10_, staffmembe12_2_.county as
county13_10_, staffmembe12_2_.house_name as house5_13_10_,
staffmembe12_2_.house_number as house6_13_10_, staffmembe12_2_.locality
as locality13_10_, staffmembe12_2_.post_code as post8_13_10_,
staffmembe12_2_.town as town13_10_, genericrol13_.role_id as

248

role2_11_11_, genericrol13_.role_type as role1_11_11_,
expensesst14_.role_id as role1_18_, expensesst14_.status_name as
status2_18_, updateable15_.role_id as role1_19_,
updateable15_.field_name as field2_19_, viewablest16_.role_id as
role1_20_, viewablest16_.field_name as field2_20_

from employment_details employment0_
inner join Grade grade1_ on employment0_.grade_id=grade1_.id
left outer join staff_member staffmembe2_ on

employment0_.lineManager_staff_id=staffmembe2_.staff_id
left outer join bank_account staffmembe2_1_ on

staffmembe2_.staff_id=staffmembe2_1_.staff_id
left outer join home_address staffmembe2_2_ on

staffmembe2_.staff_id=staffmembe2_2_.staff_id
left outer join employment_details employment3_ on

staffmembe2_.employmentDetails_id=employment3_.id
left outer join employment_details_WorkStream workstream4_ on

employment3_.id=workstream4_.employment_details_id
left outer join WorkStream workstream5_ on

workstream4_.workStreams_id=workstream5_.id
left outer join Project projects6_ on

workstream5_.id=projects6_.workstream_id
left outer join users user7_ on

staffmembe2_.username=user7_.username
left outer join staff_member staffmembe8_ on

user7_.expensesApprover_staff_id=staffmembe8_.staff_id
left outer join bank_account staffmembe8_1_ on

staffmembe8_.staff_id=staffmembe8_1_.staff_id
left outer join home_address staffmembe8_2_ on

staffmembe8_.staff_id=staffmembe8_2_.staff_id
left outer join expenses_mnemonic expensesmn9_ on

user7_.username=expensesmn9_.username
left outer join expenses_category expensesca10_ on

expensesmn9_.expeneses_category_id=expensesca10_.id
left outer join mileage_cost mileagecos11_ on

expensesca10_.id=mileagecos11_.expenses_category_id
left outer join staff_member staffmembe12_ on

user7_.holidayApprover_staff_id=staffmembe12_.staff_id
left outer join bank_account staffmembe12_1_ on

staffmembe12_.staff_id=staffmembe12_1_.staff_id
left outer join home_address staffmembe12_2_ on

staffmembe12_.staff_id=staffmembe12_2_.staff_id
left outer join Roles genericrol13_ on

user7_.role_id=genericrol13_.role_id
left outer join Role_Allowed_expenses_statuses expensesst14_ on

genericrol13_.role_id=expensesst14_.role_id
left outer join Role_Update_Staff_Details updateable15_ on

genericrol13_.role_id=updateable15_.role_id
left outer join Role_View_Staff_Details viewablest16_ on

genericrol13_.role_id=viewablest16_.role_id
where employment0_.id=?

select user0_.username as username15_12_, user0_.canApproveExpenses as
canAppro2_15_12_, user0_.canApproveHolidays as canAppro3_15_12_,
user0_.expensesApprover_staff_id as expense10_15_12_,
user0_.holidayApprover_staff_id as holidayA8_15_12_, user0_.locked as
locked15_12_, user0_.password as password15_12_, user0_.personalPhoto as
personal6_15_12_, user0_.role_id as role9_15_12_,

249

user0_.unSuccessfulLoginAttempts as unSucces7_15_12_,
staffmembe1_.staff_id as staff1_12_0_, staffmembe1_.dob as dob12_0_,
staffmembe1_.emailAddress as emailAdd3_12_0_,
staffmembe1_.employmentDetails_id as employm13_12_0_,
staffmembe1_.first_name as first4_12_0_, staffmembe1_.gender as
gender12_0_, staffmembe1_.homeTelNo as homeTelNo12_0_,
staffmembe1_.last_name as last7_12_0_, staffmembe1_.ni_number as
ni8_12_0_, staffmembe1_.tax_code as tax9_12_0_, staffmembe1_.title as
title12_0_, staffmembe1_.username as username12_0_,
staffmembe1_.workTelNo as workTelNo12_0_, staffmembe1_1_.account_number
as account1_14_0_, staffmembe1_1_.bank_name as bank2_14_0_,
staffmembe1_1_.sort_code as sort3_14_0_, staffmembe1_2_.address_line1 as
address1_13_0_, staffmembe1_2_.address_line2 as address2_13_0_,
staffmembe1_2_.country as country13_0_, staffmembe1_2_.county as
county13_0_, staffmembe1_2_.house_name as house5_13_0_,
staffmembe1_2_.house_number as house6_13_0_, staffmembe1_2_.locality as
locality13_0_, staffmembe1_2_.post_code as post8_13_0_,
staffmembe1_2_.town as town13_0_, employment2_.id as id9_1_,
employment2_.dateJoined as dateJoined9_1_, employment2_.dateLeft as
dateLeft9_1_, employment2_.employmentType as employme4_9_1_,
employment2_.grade_id as grade7_9_1_, employment2_.holidayEntitlement as
holidayE5_9_1_, employment2_.lineManager_staff_id as lineMana8_9_1_,
employment2_.salary as salary9_1_, grade3_.id as id10_2_, grade3_.code
as code10_2_, grade3_.maximumSalary as maximumS3_10_2_,
grade3_.minimumSalary as minimumS4_10_2_, grade3_.name as name10_2_,
staffmembe4_.staff_id as staff1_12_3_, staffmembe4_.dob as dob12_3_,
staffmembe4_.emailAddress as emailAdd3_12_3_,
staffmembe4_.employmentDetails_id as employm13_12_3_,
staffmembe4_.first_name as first4_12_3_, staffmembe4_.gender as
gender12_3_, staffmembe4_.homeTelNo as homeTelNo12_3_,
staffmembe4_.last_name as last7_12_3_, staffmembe4_.ni_number as
ni8_12_3_, staffmembe4_.tax_code as tax9_12_3_, staffmembe4_.title as
title12_3_, staffmembe4_.username as username12_3_,
staffmembe4_.workTelNo as workTelNo12_3_, staffmembe4_1_.account_number
as account1_14_3_, staffmembe4_1_.bank_name as bank2_14_3_,
staffmembe4_1_.sort_code as sort3_14_3_, staffmembe4_2_.address_line1 as
address1_13_3_, staffmembe4_2_.address_line2 as address2_13_3_,
staffmembe4_2_.country as country13_3_, staffmembe4_2_.county as
county13_3_, staffmembe4_2_.house_name as house5_13_3_,
staffmembe4_2_.house_number as house6_13_3_, staffmembe4_2_.locality as
locality13_3_, staffmembe4_2_.post_code as post8_13_3_,
staffmembe4_2_.town as town13_3_, user5_.username as username15_4_,
user5_.canApproveExpenses as canAppro2_15_4_, user5_.canApproveHolidays
as canAppro3_15_4_, user5_.expensesApprover_staff_id as expense10_15_4_,
user5_.holidayApprover_staff_id as holidayA8_15_4_, user5_.locked as
locked15_4_, user5_.password as password15_4_, user5_.personalPhoto as
personal6_15_4_, user5_.role_id as role9_15_4_,
user5_.unSuccessfulLoginAttempts as unSucces7_15_4_,
expensesmn6_.username as username14_, expensesmn6_.name as name14_,
expensesmn6_.name as name5_5_, expensesmn6_.amount as amount5_5_,
expensesmn6_.expeneses_category_id as expeneses4_5_5_,
expensesmn6_.mileage as mileage5_5_, expensesca7_.id as id3_6_,
expensesca7_.category as category3_6_, expensesca7_.hasMileage as
hasMileage3_6_, mileagecos8_.expenses_category_id as expenses5_15_,
mileagecos8_.id as id15_, mileagecos8_.id as id6_7_, mileagecos8_.cost
as cost6_7_, mileagecos8_.lower_limit as lower3_6_7_,
mileagecos8_.upper_limit as upper4_6_7_, staffmembe9_.staff_id as

250

staff1_12_8_, staffmembe9_.dob as dob12_8_, staffmembe9_.emailAddress as
emailAdd3_12_8_, staffmembe9_.employmentDetails_id as employm13_12_8_,
staffmembe9_.first_name as first4_12_8_, staffmembe9_.gender as
gender12_8_, staffmembe9_.homeTelNo as homeTelNo12_8_,
staffmembe9_.last_name as last7_12_8_, staffmembe9_.ni_number as
ni8_12_8_, staffmembe9_.tax_code as tax9_12_8_, staffmembe9_.title as
title12_8_, staffmembe9_.username as username12_8_,
staffmembe9_.workTelNo as workTelNo12_8_, staffmembe9_1_.account_number
as account1_14_8_, staffmembe9_1_.bank_name as bank2_14_8_,
staffmembe9_1_.sort_code as sort3_14_8_, staffmembe9_2_.address_line1 as
address1_13_8_, staffmembe9_2_.address_line2 as address2_13_8_,
staffmembe9_2_.country as country13_8_, staffmembe9_2_.county as
county13_8_, staffmembe9_2_.house_name as house5_13_8_,
staffmembe9_2_.house_number as house6_13_8_, staffmembe9_2_.locality as
locality13_8_, staffmembe9_2_.post_code as post8_13_8_,
staffmembe9_2_.town as town13_8_, genericrol10_.role_id as role2_11_9_,
genericrol10_.role_type as role1_11_9_, expensesst11_.role_id as
role1_16_, expensesst11_.status_name as status2_16_,
updateable12_.role_id as role1_17_, updateable12_.field_name as
field2_17_, viewablest13_.role_id as role1_18_, viewablest13_.field_name
as field2_18_, workstream14_.employment_details_id as employment1_19_,
workstream15_.id as workStre2_19_, workstream15_.id as id1_10_,
workstream15_.description as descript2_1_10_, workstream15_.name as
name1_10_, projects16_.workstream_id as workstream5_20_, projects16_.id
as id20_, projects16_.id as id0_11_, projects16_.code as code0_11_,
projects16_.description as descript3_0_11_, projects16_.name as
name0_11_

from users user0_
left outer join staff_member staffmembe1_ on

user0_.expensesApprover_staff_id=staffmembe1_.staff_id
left outer join bank_account staffmembe1_1_ on

staffmembe1_.staff_id=staffmembe1_1_.staff_id
left outer join home_address staffmembe1_2_ on

staffmembe1_.staff_id=staffmembe1_2_.staff_id
left outer join employment_details employment2_ on

staffmembe1_.employmentDetails_id=employment2_.id
left outer join Grade grade3_ on employment2_.grade_id=grade3_.id
left outer join staff_member staffmembe4_ on

employment2_.lineManager_staff_id=staffmembe4_.staff_id
left outer join bank_account staffmembe4_1_ on

staffmembe4_.staff_id=staffmembe4_1_.staff_id
left outer join home_address staffmembe4_2_ on

staffmembe4_.staff_id=staffmembe4_2_.staff_id
left outer join users user5_ on

staffmembe4_.username=user5_.username
left outer join expenses_mnemonic expensesmn6_ on

user5_.username=expensesmn6_.username
left outer join expenses_category expensesca7_ on

expensesmn6_.expeneses_category_id=expensesca7_.id
left outer join mileage_cost mileagecos8_ on

expensesca7_.id=mileagecos8_.expenses_category_id
left outer join staff_member staffmembe9_ on

user5_.holidayApprover_staff_id=staffmembe9_.staff_id
left outer join bank_account staffmembe9_1_ on

staffmembe9_.staff_id=staffmembe9_1_.staff_id
left outer join home_address staffmembe9_2_ on

staffmembe9_.staff_id=staffmembe9_2_.staff_id

251

left outer join Roles genericrol10_ on
user5_.role_id=genericrol10_.role_id

left outer join Role_Allowed_expenses_statuses expensesst11_ on
genericrol10_.role_id=expensesst11_.role_id

left outer join Role_Update_Staff_Details updateable12_ on
genericrol10_.role_id=updateable12_.role_id

left outer join Role_View_Staff_Details viewablest13_ on
genericrol10_.role_id=viewablest13_.role_id

left outer join employment_details_WorkStream workstream14_ on
employment2_.id=workstream14_.employment_details_id

left outer join WorkStream workstream15_ on
workstream14_.workStreams_id=workstream15_.id

left outer join Project projects16_ on
workstream15_.id=projects16_.workstream_id

where user0_.username=?
select expensesmn0_.username as username2_, expensesmn0_.name as name2_,
expensesmn0_.name as name5_1_, expensesmn0_.amount as amount5_1_,
expensesmn0_.expeneses_category_id as expeneses4_5_1_,
expensesmn0_.mileage as mileage5_1_, expensesca1_.id as id3_0_,
expensesca1_.category as category3_0_, expensesca1_.hasMileage as
hasMileage3_0_

from expenses_mnemonic expensesmn0_
inner join expenses_category expensesca1_ on

expensesmn0_.expeneses_category_id=expensesca1_.id
where expensesmn0_.username=?

select workstream0_.employment_details_id as employment1_1_,
workstream0_.workStreams_id as workStre2_1_, workstream1_.id as id1_0_,
workstream1_.description as descript2_1_0_, workstream1_.name as
name1_0_

from employment_details_WorkStream workstream0_
left outer join WorkStream workstream1_ on

workstream0_.workStreams_id=workstream1_.id
where workstream0_.employment_details_id=?

252

11.8 Appendix H – Software CD-ROM Contents

The deliverables of this project are included in the CD-ROM attached to this
dissertation due to the large size of the source code and supporting
documentations such installation and user guides and the Javadoc for the Java
source code. Below is a listing of what is included in the CD:

• OfficeMA Source Code – Contains the source code for the OfficeMA
developed by this project

• Office Management Application User Guide.pdf – The user guide for
the application.

• Office Management Application Installation Guide.pdf – The
installation guide for the application.

• issues.html – Contains a list of issues currently open in this version of the
application.

• officema.sql – The PostgreSQL database SQL scripts required to create
the OfficeMA database and the default administrator user.

• OfficeMA.war – Is the Java Web Archive for the OfficeMA Web
application. This will need to be deployed to a Web container such as
Tomcat

• Javadoc – The Javadoc documentations for the Java source code
developed for the OfficeMA.

253

11.9 Appendix I - Software used for the project

• Eclipse IDE version 3.3 (http://www.eclipse.org) – An open source
enhanced integrated development environment with Java support.

• Jude Community version 5.0.2 (https://jude.change-vision.com/) – Free
community UML Case tool.

• PostgreSQL 8.2. DBMS server (http://www.postgresql.org) – An open
source RDBMS that fully ACID compliant and includes most of SQL92 and
SQL99 data types

• Apache Tomcat 6.0.13 (http://tomcat.apache.org/) – An open source
Servlet and JSP container.

• Dojo Toolkit 0.43 (http://dojotoolkit.org/) – Dojo is an Open Source DHTML
toolkit written in JavaScript.

• OpenLaszlo (http://www.openlaszlo.org/) – OpenLaszlo is an open source
platform for creating zero-install web applications with the user interface
capabilities of desktop client software.

• Hibernate ORM framework 3.2 (http://www.hibernate.org/) – Hibernate is a
popular open source ORM framework. Version 3.2 implements the Java
Persistence API (JPA)

• Spring 2.0 framework (http://www.springframework.org/) – Spring is an
open source framework and container that can be used in a domain model
to add transactional and security support. Can also supply object
dependencies at runtime using dependency injection.

• Struts 2.0.11 framework (http://struts.apache.org/2.x/index.html)

• JUnit (http://www.junit.org/)

254

http://www.junit.org/
http://struts.apache.org/2.x/index.html
http://www.springframework.org/
http://www.hibernate.org/
http://www.openlaszlo.org/
http://dojotoolkit.org/
http://tomcat.apache.org/
http://www.postgresql.org/
https://jude.change-vision.com/
http://www.eclipse.org/

11.10Appendix J – PostgreSQL database utilities

The PostgreSQL distribution used in this project was version 8.2, included with
this download is the pgAdmin III tool shown below. The tool can be used to
execute SQL statements and scripts against the database.

255

11.11Appendix K – Jude UML CASE tool

Jude Community is a free community tool available from (https://jude.change-
vision.com/). The version used in the project was version 5.02 which supports
UML 1.2. All of the UML models in this project were developed using Jude. The
tool also supports exporting UML class diagrams to Java classes skeleton and
importing Java code into class diagrams.

256

https://jude.change-vision.com/
https://jude.change-vision.com/

11.12Appendix L – Google code project

257

Bugs raised in the project issues page

258

11.13Appendix N – Debugging JavaScript and Browser tools

11.13.1Firefox Firebug
Firebug is a plugin for the Firefox browser and it offers a great number of features
such as DOM inspection, performance monitoring, JavaScript debugging, etc…
to mention only a few.

11.13.2Firefox Web Developer Toolbar
Offers many essential features for web developers
(http://chrispederick.com/work/web-developer/)

259

http://chrispederick.com/work/web-developer/

11.13.3Microsoft Script Debugger for IE
For debugging in Internet Explorer, Microsoft script debugger can be used.
Although it does not offer as many feature as Firebug, it can be used to find
JavaScript bugs

11.13.4Microsoft IE Developer Toolbar

260

11.14Appendix O - Project Schedule

Table 22 – Project schedule and deadlines
ID Name Duration Start Finish

1 Requirement Gathering 01/10/2007 19/10/2007
2 Preliminary Report 01/10/2007 01/10/2007
3 Requirement Elicitation 01/10/2007 03/10/2007
4 Use Case Modelling 04/10/2007 17/11/2007
5 Prototype 11/10/2007 01/11/2007
6 Initial system architecture 19/10/2007 19/10/2007
7 Requirement document + prototype 17/11/2007 17/11/2007
8 Requirement Analysis 17/11/2007 07/12/2007
9 Use case realisation 17/11/2007 07/12/2007

10 Domain Analysis 17/11/2007 07/12/2007

11
Analysis class diagrams and
communication diagrams 10/12/2007 10/12/2007

12 System Design 29/10/2007 02/11/2007
13 Deployment modelling 29/10/2007 02/11/2007
14 Component modelling 29/10/2007 02/11/2007
15 Architectural modelling 29/10/2007 02/11/2007

16
Overview design and implementation
architecture 02/11/2007 02/11/2007

17 Detailed Design 10/12/2007 17/12/2007
18 Detailed class diagram 10/12/2007 17/12/2007
19 State and Interaction diagrams 10/12/2007 17/12/2007
20 Design models 17/12/2007 17/12/2007
21 User Interface design 17/12/2007 24/12/2007
22 User interface modelling and design 17/12/2007 17/12/2007

23
Design models with interface
specification 17/12/2007 17/12/2007

24 Database Design 17/12/2007 24/12/2007
25 Data requirements
26 Conceptual data model
27 Logical schema
28 Conceptual data models and SQL 17/12/2007 24/12/2007
29 Interim Report 03/12/2007 03/12/2007
30 Construction, testing and implementation 24/12/2007 21/03/2008
31 Write Java code
32 Implement the user interface
33 Database implementation
34 System documentation
35 Application source code 21/01/2008 21/03/2008

261

11.14.1Project Gantt Chart

262

263

	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	1Introduction
	1.1Motivations behind the project
	1.2Project Aim
	1.3Project Objectives
	1.4Organisation of this Dissertation

	2Technology Background
	2.1Why Web applications?
	2.2The Concepts of Web 2.0
	2.2.1Rich Internet Applications

	2.3The Web as an OO user interface
	2.4The use of a dynamic rich user interface
	2.4.1The use of rich visual widgets:
	2.4.2Breaking the page model using AJAX

	2.5The use of lightweight frameworks and established modelling techniques
	2.6Usability Requirements
	2.6.1User Interface (UI) Design Principles
	2.6.2Web pages design principles
	2.6.3Design rules for the OfficeMA

	2.7Accessibility
	2.8Summary

	3Project Requirements
	3.1HR Requirements of Small Businesses
	3.1.1Obstacles facing small businesses
	3.1.2What is needed and why?
	3.1.3Alternative applications

	3.2Software used for the Project
	3.2.1Java Web Components

	4Design Methodology
	4.1Project Lifecycle
	4.2The Software Development Process
	4.2.1Requirement Capture and Modelling
	Techniques
	Key Deliverables

	4.2.2Requirement Analysis
	Techniques
	Key Deliverables

	4.2.3Class design (Detailed design)
	Techniques
	Key Deliverables

	4.2.4User Interface Design
	Techniques
	Key Deliverables

	4.2.5Database Design
	Techniques
	Key Deliverables

	4.2.6Construction, testing and implementation
	Techniques
	Key Deliverables

	5Preliminary System Design
	5.1Requirements Gathering
	5.2Initial System Architecture
	5.3Requirement Capture and Modelling
	5.3.1Prototyping the User Interface
	5.3.2Staff Management Requirements
	Requirements Summary
	Requirements List
	Use Cases

	5.3.3Expenses Management Requirements
	Requirements List
	Use Cases

	5.3.4Authentication and Authorisation Requirements
	Requirements Summary
	Requirement List
	Use Cases

	5.3.5System Settings Management
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.6Time Booking Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.7Holiday Management Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.8Task Management Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.4Requirement Analysis

	6Implementation Strategy
	6.1System Architecture
	6.2Database layer
	6.2.1Choosing a DMBS
	6.2.2Database Implementation

	6.3Business Logic Layer
	6.3.1POJO Architectural Pattern
	6.3.2Spring Framework and Dependency Injection
	6.3.3Domain model classes
	6.3.4Object to relational mapping framework
	6.3.5Coding practices
	Code Repository

	6.3.6Unit testing the domain model classes

	6.4Presentation Layer
	6.4.1Presentation Layer logic and data formatters
	Struts 2 framework
	JavaScript Object Notation (JSON)

	6.4.2Graphical user interface
	A new approach to web user interface development
	The client side View
	The client side Model (Data)
	The client side Controller

	6.5Overall System

	7Detailed Software Design
	7.1Detailed Class Design and Implementation
	7.1.1Design and architectural patterns
	7.1.2Enumerated types
	7.1.3Dependency Injection using Spring
	7.1.4The use of Exceptions
	Implementation details

	7.1.5Generics and Parameterized Classes
	Implementation details

	7.2Application Packages
	7.2.1Company package:
	Implementation Details

	7.2.2Expenses package:
	Expenses management service
	Implementation Details

	7.2.3Holiday package:
	Holiday management service
	Implementation Details

	7.2.4Staff package:
	Staff members’ roles
	Staff management service
	Create staff sequence diagram
	Authenticate staff sequence diagram
	Implementation Details

	7.2.5Task package:
	Task management service
	Implementation Details

	7.2.6Testing the domain model

	7.3User Interface Design and Implementation
	7.3.1Application action classes
	Implementation Details

	7.3.2User Interface Design
	Simplicity and Structure
	Visibility, Affordance and Consistency
	Feedback
	Tolerance
	Closure
	Performance and Data Refresh

	7.3.3User interface controller
	7.3.4User interface modelling
	Staff management boundary classes
	Staff management UI interaction diagrams
	Expenses management boundary classes
	Expenses management UI interaction diagram
	Task management boundary classes
	Task management UI interaction diagrams

	7.4Database Design and Implementation
	7.4.1Establishing requirements
	7.4.2 Data Analysis
	Entity types and relationships
	Entity subtypes
	One to one and one to many relationships
	Many to many Relationships
	Constraints

	7.4.3Entity Relationship Model
	7.4.4Normalisation
	7.4.5Relational Database Model
	7.4.6Physical Database Model
	Design base relations
	Designing general constraints
	Analyse transactions
	Choosing indexes

	7.5Caching, Pooling and Transactions Support
	7.5.1Caching
	7.5.2Connection Pooling
	7.5.3Transactions

	7.6Security
	7.6.1Insecure Communications
	7.6.2Session Hijacking
	7.6.3JavaScript Hijacking
	7.6.4JavaScript Tampering
	7.6.5SQL Injection, Remote file inclusion and Cross-site scripting

	7.7Deployment
	7.8System Testing

	8Evaluation
	8.1Satisfaction of business requirements
	8.2Accessibility
	8.3Usability
	8.3.1Visibility, Affordance and Consistency
	8.3.2Closure, Tolerance and Feedback
	8.3.3Performance and Data Refresh

	8.4Evaluation Summary

	9Conclusions
	9.1Project Achievements
	9.2Project Issues
	9.3Contributions of this Dissertation
	9.3.1Problems with adapting functional-oriented UI as content-oriented Web UI
	9.3.2Utilising the Web as a functional user interface
	Advantages of this approach
	Disadvantages
	Summary

	9.4Suggestions for Future Work
	9.4.1Usability and Accessibility of RIA
	9.4.2Performance of RIA
	9.4.3Enhancements to the Office Management Application

	10References
	10.1Books and Articles
	10.2Web references

	11Appendices
	11.1Appendix A – Office Management Application’s Modules Survey
	11.2Appendix B – Documents Sampling
	11.2.1Sample holiday control spreadsheet

	11.3Appendix C – Use Case Models
	11.3.1Add Staff Use Case
	11.3.2Find Staff Use Case
	11.3.3View Personal Details / Edit Personal Details
	11.3.4View brief / complete staff details
	11.3.5Edit staff details
	11.3.6Find Expenses
	11.3.7View, approve, reject and pay Expenses
	11.3.8Edit Expenses Use Case
	11.3.9Add New Expenses Use Case
	11.3.10Login use case
	11.3.11View/Update system settings
	11.3.12Update my settings
	11.3.13View/Add Timesheet
	11.3.14View timesheet summary
	11.3.15View Holiday Details use case
	11.3.16View Holiday Calendar use case
	11.3.17View / Update Tasks use case

	11.4Appendix D – Requirement Analysis Models
	11.4.1Staff management communication diagrams
	11.4.2Staff management analysis class diagram
	11.4.3Authentication and Authorisation communication diagram
	11.4.4Authentication and Authorisation sequence diagram
	11.4.5Authentication and Authorisation analysis class diagram
	11.4.6Expenses management communication diagrams
	11.4.7Expenses management analysis class diagram
	11.4.8Expenses state diagram
	11.4.9Holiday management communication diagrams
	11.4.10Holiday management analysis class diagram

	11.5Appendix E – Relational Database Model
	11.6Appendix F – Physical database schema
	11.7Appendix G – Sample ORM SQL queries
	11.8Appendix H – Software CD-ROM Contents
	11.9Appendix I - Software used for the project
	11.10Appendix J – PostgreSQL database utilities
	11.11Appendix K – Jude UML CASE tool
	11.12Appendix L – Google code project
	11.13Appendix N – Debugging JavaScript and Browser tools
	11.13.1Firefox Firebug
	11.13.2Firefox Web Developer Toolbar
	11.13.3Microsoft Script Debugger for IE
	11.13.4Microsoft IE Developer Toolbar

	11.14Appendix O - Project Schedule
	11.14.1Project Gantt Chart

