DEVELOPMENT OF RICH INTERNET
APPLICATION FOR OFFICE MANAGEMENT
SYSTEM

A Dissertation

Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
EBUSINESS, SP06

in the

FACULTY OF SCIENCE
The UNIVERSITY OF READING

by
Omer Dawelbeit, BSc (Hons)

sip05oid
2" June 2008

Supervisor Ms. Eve-Marie Larsen

Acknowledgement

| would like to thank my supervisor Eve Marie for all her assistance during the
project. Also my special thanks go to Nia Alexandrov for her support over the past
two years made achieving this master degree possible. | would like to also thank
Nellie Round for her help.

| am also grateful to my parents Ibrahim and Amna and their continuous support
over the years. This support has given me the energy to carryon and complete
this dissertation. Special thanks also go to my brother and sisters.

| would like to thank my wife Amna for her continuous support, patience and
constructive feedback in regards to this dissertation. The smiles of my two
daughters Laila and Sarah also made the long hours spent on this project bliss.

My appreciation goes to John Rossall my work colleague in Thoughtbreak for
kindly offering technical advice and sharing knowledge.

Special thanks also go to Paul Alexander for proof reading this report and
providing feedback on the application.

Many thanks to Amna Ahmed, Omer Abu-Bakar, Haleem Abu-Gusiessa and
Mohammed Al Haj for their contributions to the survey and for their feedback on
the application.

Abstract

This project is concerned with the design and implementation of a cost effective
Rich Internet Application for an office management system that can be used to
mange the staff in a small business. This dissertation outlines the shortcomings
of using traditional Web design methodologies to design functionality-oriented
applications. To overcome these shortcomings the project has devised a
comprehensive design and implementation methodology to implement a new
generation of Web applications called Rich Internet Applications. This design
methodology is largely based on two pillars, one is the traditional and established
software design principles outlined in the literature such as Bennett et al. [4],
Stone. et al [34] and Shneiderman [32] and the other is the new concept of Web
2.0 [24].

The project uses the Unified Software Development Process, relational database
theory and the user interface principles to design the application, and then
devises a methodology to implement a dynamic, rich user interface. The project
implements the application using the Java programming language and other Web
technologies and Open Source frameworks such as JavaScript, HTML, CSS,
Hibernate, Spring and Struts 2. This report provides the design, implementation
and evaluation of the application and clearly demonstrates that the developed
Rich Internet Application has delivered better usability, interactivity and
performance compared to traditional Web applications.

Table of Contents

Acknowledgement.oeuieeiiiniiiniii e, 2
J N 015 (7= 101 P T 3
Table of ContentS......c.uiieeeiiieiiiieiiieei e 4
List Of TADIES . .euuiieeiiieiieiiieii et 8
[o) il S (o [V (= T 9
AbDreviations ..o eeieeaanns 12
1 INtroducCtion... . eu.ee i, 13
1.1 Motivations behind the project..........oooeeeiieiieeiieiiiiiieiieiiiiieeieiieeeeeeeeenn 13
IV (o) (= AN 1 o T T T T T 13
1.3 ProjeCt ODJECHVES. . covuuiiieiiiieiiieiieen, 14
1.4 Organisation of this Dissertation..............coooveeeiiieiiiieiiiiiiiieiiieiiieiienee 14

2 Technology Background.........eeeuiieieeiiiiiiiiiieiiieeieeeeeeeeeieeeeieeeeeeeeeeeeeene 15
2.1 Why Web applicationS?.......ccuuiieeeiiiiiiiiiiiieeiiieeiiei e, 15
2.2 The Concepts of Web 2.0, ...iieeiieeiieiiiiiieiieiieiieeiieeeeeeeeeeeeeeieeeeeee 16
2.2.1 Rich Internet ApplicationS............cooeveeiieeiieiiiiieiieiieeiieiieeieeeeieeeen. 18

2.3 The Web asan OO userinterface........coeeeeieeeiiieiiieiiiiiiiiiiiiiieiiieeeeeeennns 19
2.4 The use of adynamic rich userinterface.............oocoeeveeeieeeiiieiiieiiieeeennn.... 21
2.4.1 The use of rich visual WidQetS:.......coiieeeiieiiiiiieiiiiiieeieeeiieeeeeeeee 21
2.4.2 Breaking the page model USINgAJAX . ..euieeiieieeiieiiiiieeieieeeeeeen 23

2.5 The use of lightweight frameworks and established modelling techniques 25
2.6 Usability RequirementsS..........occeuieeiieeiieeiiiiiiiiiiiiiiieiieiiieiiieiiieeeeeeeeness 26
2.6.1 User Interface (Ul) Design PrinCipleS........ooeeuiiieuiiieiiiiiiieiieieeaennn 26
2.6.2 Web pages design prinCipleS........coeveeiieeieeiiieiiiiiiiieieeiieeeeeeenn. 27
2.6.3 Design rules forthe OfficEeMA....oiieiiieiiiiiieiiieeiieieeeeeeeeeieeeeeeeen 28

2.7 AcCeSSIDIItY. .oeuuiieniieeiiie i 29
2.8 SUMMAIY . cieuiiieiiiiiee ettt ettt ee i 30

3 Project RequirementS.........oooeuiieeiiieiiiiiiiiiiiieiieiieiie e 32
3.1 HR Requirements of Small BUSINESSES......cceuiieiieeiieiiiiiiiiiieiieieeeennne. 32
3.1.1 Obstacles facing small buSINESSES.........oovveeiiieeniiieeiiieiiieiieeeeeenn.. 33
3.1.2 Whatisneeded and Why?........ooouuiieniieniieiiiiiiieeieieieeeeieeeieeeeeeeeen 33
3.1.3 Alternative applicationS...........coeveeiieniieeiiiiiiiiieiieeiiieiieeiieiiieeieen 34

3.2 Software used for the Project........oceueieeeiieiieiieeiiiiiieiiiiiieiieeiieeeieeeen, 36
3.2.1 Java Web ComponentS..........coeeeuiiieniiieeiiiiiiieiiieiiieeiieeieeeieeeeennn 36

4 Design MethOdOIOQY ... ieuiee i, 37
4.1 Project LifeCYCIe. . ouuuiieeniiieiiiiiiiiiiiiieiieeeeieee e 37
4.2 The Software Development ProCesS.......oiieuiieeiieiieiiieiiieiiiiiiiieeieeeennns 38
4.2.1 Requirement Capture and Modelling.........ccuevveeniieeniiieeniieeiiieieneennn.. 39
4.2.2 Requirement ANAIYSIS. ...ueuuiieiieiieiiiiieeeieeieeeeieeeie e, 40
4.2.3 Class design (Detailed desSign).........ooeeeeiiieeiiieeiiiieiiiiiiieeiiieeeeeennnne. 42
4.2.4 User Interface DeSIiQN....cceuuiieiieiiiiiiiiieieieeeeieeiieieeeieeeieieei, 42
4.2.5 Database DeSIQN.....ccuuiieniieniiiiiii e 43
4.2.6 Construction, testing and implementation...............ccoeevveveeeieeeeeennnnn.... 45

5 Preliminary System DeSign.........ooiveeiiieeniiiiiiiiiiiiiieeiieeeiiieeeieee e 46

5.1 Requirements Gatheringottt ettt ettt ettt i et teareaeeaenses 46

5.2 Initial System Architecture.............cooevvveeiiieeiiiiieiiiieiiieeeiieiiiieiieeeeien 46
5.3 Requirement Capture and Modelling........oooeeeveiieiieniieieiieiieieiieieen . 47
5.3.1 Prototyping the User Interface..............ccoeevvveeiieeneiieeeiiieeiiieieiieeeennn 47
5.3.2 Staff Management RequirementS............ooeuvveeiieeiieeiiiiiiiiieiieiiennnen.. 48
5.3.3 Expenses Management RequirementS...........coocoeveveeeiieeeieeiieneieennnnn... 50
5.3.4 Authentication and Authorisation Requirements...................cccvvveee...... 53
5.3.5 System Settings Management.............cooooeeeeiiieeiiiieiiiieiiiiieeiiieeeeennn 54
5.3.6 Time Booking RequirementS..........ococvveeiieiieiiieiieeiieiiieiieiieeiieiennn. 56
5.3.7 Holiday Management RequirementS.............coceveieeiieniieeiieiieiieeeennn.. 58
5.3.8 Task Management RequirementS............ooeuvveeiieeiieeiiieiiieiieiiiiennnen.. 60
5.4 Requirement ANAIYSIS.....ouuieeiieniieiiieeii et 61
6 Implementation StrateQy...........oooeeeiiieiiieniiiiiiiiieie e 62
6.1 System ArchiteCture.ooevvveiieeniiiiiiiee e, 62
6.2Database layer.........ooueieeiiieiiiiiiiie e 63
6.2.1 Choosinga DMBS..........cuuiiieeiiiiiiiieeieieeeeee e 63
6.2.2 Database Implementation.............ooooeeeiieeiieiiieiiiiiieieeiieiiieeiieeeen 63
6.3 BUSINESS LOQIC LAYl .. .cuieeiieiiiieiieeii e 64
6.3.1 POJO Architectural Pattern...........oooovveeeieeiieiieiieeiiiieeiieiieiieeeeeen 64
6.3.2 Spring Framework and Dependency Injection..............coeeveeeeieeennenn.... 66
6.3.3 Domain Model ClaSSeS......vvuuiieieniieiieiiiiieiiieieieiieieeiieeieien 67
6.3.4 Object to relational mapping framework.............ooevvveiiieeiiieeeiiennnnn... 67
6.3.5 CodiNng PracCtiCeS....cuuunieeiieniieeiii e 72
6.3.6 Unit testing the domain model classes...........cooeeeeveeiieniieiieeiieiiennnn... 72
6.4 Presentation Layer..........oovvuiieeiieniiiiiiiiiiiieiiie e 74
6.4.1 Presentation Layer logic and data formatters................cooeeevveeennnnn..... 75
6.4.2 Graphicaluserinterface...........cooooeveeiieeiieniiiiiiiiiieiieeiieiieieeeieenn. 77
6.5 0verall SYySteM.....uuiieeeiiieiiiie i 82
7 Detailed Software DeSIONooeuveeieniiiiiiiiiiiieiiieiiie i 83
7.1 Detailed Class Design and Implementation................coeeeveeiieeiieeiiieneennn.... 84
7.1.1 Design and architectural patterns..............ooooeeeeeiieeiiieiieiiieiiieiiennnn... 84
7A1.2Enumerated typesS.....ooeuiieieeiiiiii e 85
7.1.3 Dependency Injection using SPring.......c.e.eeeeiieeiieniieniieiiieiieieeiennnn... 86
7.1.4 The use of EXCEPtioNS......ccuuiieeniiieniiiiiiiiiiiiee e 87
7.1.5 Generics and Parameterized ClasSesS..........oooevvveeiieeiieiiienieeiieeeeennne... 87
7.2 Application PackagesS.........ceuieeniieniieiiiiiiiiieiieeieiieeee e 88
7.2.1 Company PaCKaQe: . ..oouuuieeeiiieiieiii e 89
7.2.2 EXPENSES PACKAQE: .. .uuiieniieniie i eeeeaeaanens 91
7.2.3Holiday package:.......ccuueveniieniiieiiiiiie e 95
7.2.4 Staff package:.....c.uuiieeeniiiiiiiiiiiie e 98
7.2.5Task PaCKaQe: .. .ouuieeiiieiieiiiiie e, 105
7.2.6 Testingthe domainmodel...........ccooeuvieeiiieiieiiiiiiiiiieiiieeieiieeeeeneee . 107
7.3 User Interface Design and Implementation.................ooeevevveeiieniieneeennn.. ... 108
7.3.1 Application action clasSescooeeeuiieeiiieeiieiiiiiiiiieeiiieeieiiieeeaneee . 109
7.3.2User Interface DeSigON.....ccoeuiieniieniiiieiieiieeiiieiiieiieeieeiieeieiien 112
7.3.3 User interface controll€r............ccoeovveiiieeiiieeiiiiieiiieeiiieeiieeeeennnnee.. 116

7.3.4 User interface MOdelliNg.ttt ettt ettt tieteeieeeneenen, 117

7.4 Database Design and Implementation................coeeeeeieeiieeeiiiieiieneinnnne... 126
7.4.1 Establishing requirementS............ooveeiieiieiieiiiiiiiiieiieeiieeiieiieeeennn . 126
7.4.2 Data AnalySiS.......oovuuiieniiieiiieiiiiiiiiieiieei e 126
7.4.3 Entity RelationshipModel..........ooovvieeiiieiiieiiiiiiiiiiiieeiieeieiieeeennnn 128
7.4 4 Normalisation.........cueeveeiieeiiieiiieiiie e 131
7.4.5 Relational Database Model............ocovvvveiieniieniieiiiiieiieiieiiiiieeenn 134
7.4.6 Physical Database Model............ocooveeiiieiiieiiiiiiieiieiiiieieiiieeennne . 134

7.5 Caching, Pooling and Transactions Support............ccvueeeenieeeiiieeeiienenn.... 137
AR I OF= Te] 111 T P T 137
7.5.2 Connection POOliNG. . ..ieuieniieiiiiiiiiieiieeiieiieeiieeieeieeee e 137
7.5.3TransactionS......oceuuiieniieiiiiieiiei e 138

P RS- Tol U 1 A A T 139
7.6.1 Insecure COomMmMUNICAtIONS....ovvuuiieeniieeiiiiiieeiiieeieeeieeeeieeen 140
7.6.2 Session Hijacking.......uoveeiieniieniiiiiiiiieiiieeiieeieeieiiieieieieiieeeene 141
7.6.3 JavaScript Hijacking.........ooeuuiieeiiieiiieiiieiiiieiieeiiieieeeeieeieeen 141
7.6.4 JavaScript Tampering.......o.eveeiiieiiieiiiiiiiiieiieiieiieiieeieeieieeeenn 141
7.6.5 SQL Injection, Remote file inclusion and Cross-site scripting............ 142

7.7 DeploymMent. . ..cueeiieiieiiiiiie e 143

7.8 System TeSting.....cuuuiieeeniiieeiiieeiiiei e 144

BEvaluation.....oooouuiieeiiiiiiiii i 145

8.1 Satisfaction of business requirements............oooceeevieeiiieiieeiiieiieeiiieenn... 145

8.2 ACCESSIDIItY .. uieeniiieiieiieiiieiie e 145

8.3USability....cuuiieuniiieniiieniiieiiiii e 146
8.3.1 Visibility, Affordance and Consistency.........c.eoveeeieeiieieeiieiieiienenn.. .. 146
8.3.2 Closure, Tolerance and FeedbacK...........oooovveiieeniiieniiieiieeiiieennnne 147
8.3.3 Performance and Data Refresh............ooeeveiieeiiieiiieiiiiieiiiiiieennnn . 147

8.4 Evaluation SUMMAry......coooeeeuiieeniiieiiiieiiieeiiieeeeeeeeeeeeeeeeeeeeeieeeeeenn 147

N 00] aTe] (11 [0) A 1T T 148

9.1 Project AchievementS............oeveuiiiueiieniiiiiiiiiiiiieiieiieieiieeieeiieeeieeeieeenn 148

9.2 ProjeCt ISSUES. ..ouuieeiiieiieiiiiie i 149

9.3 Contributions of this Dissertation................ceeiveeiieeiiieeiiieiiieiiieeieeeeenn.. 149
9.3.1 Problems with adapting functional-oriented Ul as content-oriented Web
0] T 149
9.3.2 Utilising the Web as a functional userinterface.....................c........... 150

9.4 Suggestions for Future WOork............oooeiveeiieeiiieiiieiiieiiieiieeeiiieeiieeeeenn 152
9.4.1 Usability and Accessibility of RIA.....oooviieeiiieiiiiiieiieiieiiieiieieene 153
9.4.2 Performance of RIA......cooveeiiieiiieiieiieeiieeeeeeeeeeeeeeeeeeee 153
9.4.3 Enhancements to the Office Management Application...................... 153

10 REfEIENCES. .ouuuiieeiiiiiieiiee e eeeeeeeen 154
10.1 BoOkS anNd ArtiCleS. . ouuieeiieeiieeeiieeiiee e 154
10.2 Web referenCes ...ooveeeiieeniiiiiiieiiiieiiieeeeieeieeee e, 157

(AN o] o1=] a Lo [{of= - T 161

11.1 Appendix A — Office Management Application’s Modules Survey........... 162

11.2 Appendix B — Documents SamplinQ.......occeevveiieniieiiieiiieiieeiiiiieieeen. 163
11.2.1 Sample holiday control spreadsheet..............coooeeveiveeeiiieeieiiennnn.... 163

11.3 Appendix C —Use Case MOdEIS. ...ttt iaeeeeaienes 164

11.3.1Add Staff Use CaS€.......cooeeuniiieeniiiieiiiiiiiieiiiieeeieeeeeeeeeeeeeeeennn 164
11.3.2Find Staff Use CaS€......ccuieeniieniieniiieiiiiieiiieiiieiieeiieeiieeieeeeeeen 169
11.3.3 View Personal Details / Edit Personal Details..................cceevveene...... 172
11.3.4 View brief / complete staffdetails............oooeeeveeiieieiieiieeiiiieiennnnn... 175
11.3.5 EditstaffdetailS........coooeeeeiieeiiieiiiiiiiiiiiiiieeieiieeieieeiieeeeen 177
11.3.6 FiNd EXPENSES..uuiieniieniieniieiieiiiiieiie e 180
11.3.7 View, approve, reject and pay Expenses...........ocoeeveeeeeeeeeeeeeennnnnn.... 185
11.3.8 Edit Expenses Use CaSe..........ooeuiieiienieeiiiiiiieiieiiiiieiiieeen 188
11.3.9 Add New Expenses Use CaSe..........coeuuiieenniieeiiieiiiieiieeiieeeeennn... 191
11.3.10 LOQIN USE CASC..eeuuiieniieniieiieeiiiiee e eeeeeeeeieeieeeeenne 196
11.3.11 View/Update system settingS.........coooeeueiieeniieeiiiieiiieiiieiieeeeenn 198
11.3.12 Update my settingS........oeeeiieniiieiiiiiieiiieiiieiieiieiieiieeieeieeieeen 202
11.3.13 View/Add Timesheet.........cceuiieeiiieiiiiiiieeiiieeiiieiiieeiieeeeeeeeenn 204
11.3.14 View timesheetsummary...........oooeeeeiieeiieeiieiiieiiieeiieiieiieeeieeeen 207
11.3.15 View Holiday Details use case...........ccoevveeieeeeieniieiiiiieiiieeeennnn.. 210
11.3.16 View Holiday Calendar use CaS€..........ocoeuveenieniieniienieniieiieiennnen... 213
11.3.17 View / Update TaskS USE CASE.........ueveeniieeniieniiieeiieeiiieeeieeeenn. 215
11.4 Appendix D — Requirement AnalysisModelS...........c.eeveeeeeeenieeenenenn... 217
11.4.1 Staff management communication diagrams................cceeveeennnnn..... 217
11.4.2 Staff management analysis classdiagram...............cceeeveeeneennne..... 219
11.4.3 Authentication and Authorisation communication diagram.............. 219
11.4.4 Authentication and Authorisation sequence diagram....................... 220
11.4.5 Authentication and Authorisation analysis class diagram................ 220
11.4.6 Expenses management communication diagrams.......................... 221
11.4.7 Expenses management analysis class diagram.............................. 224
11.4.8 Expenses statediagram...............ooeeenieeniieiiiniieiieiiiiieiiiieeiennn 225
11.4.9 Holiday management communication diagrams.............................. 226
11.4.10 Holiday management analysis class diagram................................ 228
11.5 Appendix E — Relational Database Model...............occcevveeiieeiieeieniiennnn... 229
11.6 Appendix F — Physical database schema...............coooovevveeiieiiieninennnnnn.... 236
11.7 Appendix G — Sample ORM SQL QUENES......ceevveveeeiiiieieeeeeeiieeeenne. 247
11.8 Appendix H — Software CD-ROM ContentS.........ooeeeeiveeiieeiieniieniieennn... 253
11.9 Appendix | - Software used forthe project............ccoeeeevvevveeeeiieeneeennnnn... 254
11.10 Appendix J — PostgreSQL database utilitieS.............oeeeeeveeiieniiennnnn..... 255
11.11 Appendix K—Jude UML CASE tOOl.....cuuivveeeiiieiiiieiiiieiiieiieeeeennne 256
11.12 Appendix L — Google code project........eeeeeeeeieeieeeeeiieeeeiieeeieeeeeevenenen.. 257
11.13 Appendix N — Debugging JavaScript and Browser tools...................... 259
11.13.1 Firefox FirebuQ.......covveeiieeiieiiiiiiiiiieiiieiieiieeiieeieeeieeeiieiieeean 259
11.13.2 Firefox Web Developer Toolbar..........coeveeniieniieeiiieeiieiieeieennn.. 259
11.13.3 Microsoft Script Debuggerfor lE..........ooovviveeiieeiiiiiiiiieiieiieeen 260
11.13.4 Microsoft IE Developer Toolbar..........oooeeeeiieeniiieeiiieeeiieieiieeeeeen.. 260
11.14 Appendix O - Project Schedul€..........oooevieeniieniiieiiiiiiiiiieiiieeieeeenn 261
11.14.1 Project Gantt Chart...........cooooeveiiieeiiiiiiiiee e 262

List of Tables

Table 1 — A comparison of sample widgets used in desktop and Rich Internet

APPHCALIONS. ...t 22
Table 2 — Similarities between desktop applications and Web capabilities.......... 30
Table 3 — Alternative software applications and their issues...........cc.c.ccoooveee. 35
Table 4 — Requirements summary for staff management....................c............. 48
Table 5 — Use cases summary for staff management.....................cc 49
Table 6 — Requirements summary for expenses management..............cccccveveeen. 50
Table 7 — Use cases summary for expenses management............cccccuvvvunnnnneennn. 52
Table 8 — Requirements summary for authentication and authorisation.............. 53
Table 9 — Use cases summary for authentication and authorisation.................... 54
Table 10 — Requirements summary for system settings management................ 54
Table 11 — Use cases summary for system settings..............oouuiiiiiiiiiininn, 56
Table 12 — Requirements summary for time booking..............ccccoooeiiiiiiiiiiiiiinnnnnn. 56
Table 13 — Use cases summary for time booking..............ocovviiiiiiiiiiiiniineee 57
Table 14 — Requirements summary for holiday management................ccccevvneee. 58
Table 15 — Use cases summary for holiday management..............ccccuvvinnnnee. 59
Table 16 — Requirements summary for task management....................cccccoooeen. 60
Table 17 — Use cases summary for task management..............ccccceeeiiiiiiineeennnnn. 61
Table 18 — Some of the features of PostgreSQL vs. MySQL [20].........c.cevuennnnn.n. 63
Table 19 — Crow’s feet notation used in the ER- modelling.................ccccn. 64
Table 20 — ER-Model and Relational Mode to JPA and Hibernate mappings...... 70
Table 21 — Data types for the various models...........ccooeeiieiiiiiiiiiiiieeeeeeee, 135
Table 22 — Project schedule and deadlines...........cccoooviiiiiiiiiiiic e, 261

List of Figures

Figure 1. Gartner Hype Cycle for 2006 technologies [27]..........cceeeeeiiiiiiiiineeen..n. 17
Figure 2. Comparison between Standalone and Rich Internet Applications........ 18
Figure 3.. The duality of the Web [19].....cccoo i 19
Figure 4. Traditional server based MVC Web applications [21]..........ccceeeveennnnnnn. 24
Figure 5. RIAMVC Web applications [21]......ccccoeeiiiiiiiiiiiiieiee e 24
Figure 6. Traditional waterfall lifecycle model...............cccooiiiiiiiiis 37
Figure 7. Activities that lead to software deployment, adapted from Grand [21]..39
Figure 8. Sample Model of Database Development [23]..........cooviiiiiiiiiiieieiinnnnnn. 44
Figure 9. Initial package architecture for OfficeMA.............cccooiiiiiiiiiiier 47
Figure 10. Use cases for staff management...................cc s 49
Figure 11. Expenses management USE CaSES.........ccccevuvieiiiiiiieeeiiiieeeeeie e 51
Figure 12. Login use case diagram...........ocooeiieieiiiiiiieiiieiiii e 53
Figure 13. System settings management use cases diagram............................. 55
Figure 14. Time booking use cases diagram.............cccoeeieiiniiiieeiiiiiiieeeeeieiis 57
Figure 15. Holiday management USE CaSEsS.........cccuuviiiiiiiiiiiieiiiieeeeee e 59
Figure 16. Task management USE CASES.........uuuuuuuuuiiiiiiiiiaeeee e e e e ee e e eeeeeeeeeiaeeees 60
Figure 17. Layered architecture for a typical Web application............................. 62
Figure 18. Part of detailed class model showing entities, a repository and a

ST Yo PP 65
Figure 19. Business logic layer showing domain model and ORM layer............. 68
Figure 20. JUnit tests executed from within the Eclipse IDE................c.....coo...... 73
Figure 21. Office Management Application Presentation layer....................c....... 75
Figure 22. Using JavaScript eval function on a JSON string to create a JavaScript
10 o] =T o S 76
Figure 23. View Staff Details dialogue widget............coooommiiiiiiiiiiiicee e 79
Figure 24. JavaScript classes declarations in DOjO............ccoovviiiiiiiiiiiiieees 80
Figure 25. Boundary class diagram for ViewStaff widget....................coooonnn. 80
Figure 26. Sequence diagram for the ViewStaff widget................ccccciiiiiiniis 81
Figure 27. OfficeMA candidate technologies. Adapted from Richardson [30]...... 82
Figure 28. Package structure for OfficeMA detailed classes.............ccccccceeirieenns 84
Figure 29. Data Access Object Class Diagram [30].........ccoovviiiiiiiiiiieiiiiiiieeee, 85
Figure 30. Spring beans schematic for OfficeMA classes.............ccccoecviiiinreneen. 86
Figure 31. Generic repository super class and interface for CRUD operation.....88
Figure 32. WorkStream, Project and repository classes.............ccccccvvviiiiiiiiinnnnns 90
Figure 33. Grade and GradeRepository Classes............cceevieiiiiiiiiiiiiiiieeeeeeii 90
Figure 34. Spring beans schematic for ExpensesManagementServicelmpil........ 92
Figure 35. Methods defined by the ExpensesManagementServicelmpl.............. 92
Figure 36. Expenses classes and dependencies (Generic repository classes
omitted fOr Clarity).........oooueii i e 94
Figure 37. Spring beans schematic for HolidaysManagementServicelmpl.......... 95
Figure 38. Methods defined by the HolidaysManagementServicelmpl................ 96
Figure 39. Holidays classes and dependencies (Generic repository classes
omitted fOr Clarity).........oouueiii e 97

Figure 40

. Role classes and dependencies (Generic repository classes omitted

(0] e3 F=1 1Y TSP 99
Figure 41. Spring beans schematic for StaffManagementServicelmpl.............. 100
Figure 42. Methods defined by the StaffManagementServicelmpl.................... 100
Figure 43. Sequence diagram for the createStaffMember...............ccccciiiiinnnns 101
Figure 44. Sequence diagram for the authenticate..............c.cccooooiiie 102
Figure 45. Staff classes and dependencies (Generic repository classes omitted

L{0] o3 F=1 117 TSP 104
Figure 46. Spring beans schematic for TaskManagementServicelmpl.............. 106
Figure 47. Methods defined by the TaskManagementServicelmpl.................... 106
Figure 48. Task classes and dependencies.............cccuveveeiiiiiiiiiiicciiiiieeeeeeeeen 107
Figure 49. Struts 2 request flow [44]........oooririiiie e 108
Figure 50. Package structure for presentation layer................ccccciiiiiiiiiiiiinnnns 109
Figure 51. Office Management Application desktop..........ccoevvviviieiiiiiiiieeiinnnnn. 113
Figure 52. OfficeMA menus and toolbar..................ueiiiiiiiiiiiiiiiiiiiieeeeeeeee 113
Figure 53. An animated image to indicate the application is loading data.......... 114
Figure 54. Message dialogues in the OfficeMA...........ooiiiii 114
Figure 55. Add staff WindOW...........ooouuiiiiiiii e, 115
Figure 56. Find staff WindOW...........ccoooo e 116
Figure 57. Class diagram for the client side JavaScript controller..................... 117
Figure 58. Boundary class diagram for staff management VSOs...................... 118
Figure 59. Edit staff details sequence diagram..............cccoceiiiiiiiiiiiiii e, 119
Figure 60. View staff details sequence diagram..............coooooiiiiiiiiiiiieeee. 119
Figure 61. Add staff details sequence diagram..............cccovviiiiiiiiiiiiiccceeee, 120
Figure 62. Find staff sequence diagram..............coooiiiiiiiiiiii s 120
Figure 63. Boundary class diagram for expenses management VSOs............. 122
Figure 64. Add new expenses item sequence diagram..............cccoeeeeeeeeeeeeeennns 123
Figure 65. Boundary class diagram for task management VSOs...................... 124
Figure 66. View Tasks sequence diagram.............oouuuuiuuniiiiiinieeeeeeee e 125
Figure 67. Delete/Update Task sequence diagram.............ccoovveieeeieiieiiiiieeennnn. 125
Figure 68. The Office Management Application preliminary E-R diagram......... 129
Figure 69. EHCache configurations..............ccoooviiiiiiiii i 137
Figure 70. DBCP connection pooling configurations..............cccccuvvviiiiiiniiinennns 138
Figure 71. Securing OfficeMA application with Apache Web server.................. 140
Figure 72. Deployment diagram for OfficeMA..........cooiiiiie 143
Figure 73. Add staff use case diagram..............oooiiiiiiiiiiii 164
Figure 74. Find staff use case diagram..............ccoooviiiiiiiiiiiiiiii s 169
Figure 75. View/Edit personal details use case diagram................cccceeeeeeennnnn.n. 172
Figure 76. View brief/complete staff details use case diagram.................c........ 175
Figure 77. Edit staff use case diagram..............coooiiiiiiiiii 177
Figure 78. Find expense use case diagram.................uuueeeumimmiimiimiinniiiieieiiennennns 180
Figure 79. View, approve, reject and pay expenses use Case diagram............ 185
Figure 80. Add new expenses use case diagram...............ceeeeeeeeeeneeeeieeeeennnnnns 191
Figure 81. Add staff communication diagram..............cccccoceiiiiiiiiiiiee 217
Figure 82. Edit Staff communication diagram.............cccccoiiis 218
Figure 83. View Staff Details...........ccooooiiiiii e 218

10

Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.

Staff management analysis class diagram..............ccccccoiiiiiiiiiinnnnn. 219

Login communication diagram.............cceeeveviiiiiiiiiiiiin e 219
Authentication and Authorisation sequence diagram........................ 220
Authentication and Authorisation analysis class diagram................. 221
Add/Edit expenses communication diagram...............cccccceeriiiieeeeeenn. 221
Find Expenses communication diagram...........cccccceeviviiiiieviiiiieeeennnn. 222
View Expenses communication diagram................eeuiiiiiiiiineeeeeeneen. 223
Expenses management analysis class diagrams..................cccceeee. 224
Expenses management analysis class diagrams...................coeeeeee. 225
Approve/Cancel holiday communication diagram............................. 226
Request/Cancel holiday communication diagram.............cccccceeeeeeee. 226
View holiday calendar communication diagram...............ccccceeeeeeennnn. 227
View Holiday details communication diagram.................ccceevvuienennn. 227
Holiday management analysis class diagram..........c.cccoooevvviiienennnn. 228

11

Abbreviations

ACID
BCNF
CIO
CRC
CRUD
CSS
DAO
DBMS
DDL
DHTML
D
DML
DOM
DTI
EJB
ER
GUI
HR
HTML
HTTP
IDE
1S

IT
J2EE
JDBC
JPA
JSON
JSP
JVM
MDI
MVC
OfficeMA
00
ORM
OS
OWASP
POJO
RIA
TLC
U
UML
USDP
VSO
W3C
WuUI
XML

Atomicity, Consistency, Isolation, Durability
Boyce-Codd Normal Form

Chief Information Officer

Collaboration — Responsibility Card
Creating, Retrieving, Updating and Deleting
Cascaded Style Sheets

Data Access Object

Database Management System

Data Definition Language

Dynamic HTML

Dependency Injection

Data Manipulation Language
Document Object Model

Department of Trade & Industry
Enterprise Java Beans

Entity-Relation
Graphical User Interface

Human Resources

Hypertext Markup Language

Hyper Text Transfer Protocol

Integrated Development Environment
Internet Information Services Server from Microsoft
Information Technology

Java 2 Enterprise Edition

Java Database Connectivity

Java Persistence API

JavaScript Object Notation

JavaServer Pages from Sun Microsystems
Java Virtual Machine

Multiple Document Interface
Model-View-Controller

Office Management Application

Object Oriented

Object Relational Mapping

Operating System

Open Web Application Security Project
Plain Old Java Object

Rich Internet Applications

Traditional Waterfall Lifecycle

User Interface

Unified Modeling Language

Unified Software Development Process
View Support Object

World Wide Web Consortium

Web User Interface

Extensible Markup Language

12

1 Introduction

1.1 Motivations behind the project

Statistics for 2006 published by the DTI (Department of Trade & Industry) [36]
shows that out of 4.5 million businesses in the UK, 99.3% were small firms with
fewer than 50 employees. To support the running of their day to day activities and
staff management most of these businesses rely on manual processes such as
paper forms or spreadsheets. This is due to the fact that these businesses
usually do not have the budget to hire IT consultants to develop bespoke
applications or the budget to buy out-of-the box software applications that bears
a high price tag on licensing.

Web applications can provide a solution and automate these day to day activities,
and combined with Web 2.0 features these Web applications can be easy to use,
flexible, interactive and cost effective. Such applications can enhance the
productivity and enable those businesses to have better control over their
operation, keep their mobile workers and customers closer.

The need for the work on this project has risen from the requirements of a small
business to be able to automate and manage day to day activities such as
expenses, holidays, time booking and electronically store employee data rather
than relying on paper and spreadsheets to manage these activities. Based on the
large number of small business today the project tried to design and implement a
Web application that at least satisfies a generic set of requirements of managing
the staff in a small office and making this application configurable where possible.

Most of the small businesses surveyed complained from the fact that these
manual processes are time consuming and welcomed the idea of a cost effective
Web application which is secure and has access roles so that the administrators
are in control and the normal staff roles are restricted.

1.2 Project Aim

The aim of this project is to design and implement a cost effective and
configurable Office Management Application as a Rich Internet Application that
incorporates at least the staff and expenses human resources areas with the
ability to extend the application in the future to cover the other areas such as
holidays and time booking.

13

1.3 Project Objectives

The objectives of this project are summarised as follows:

* Investigate the possibility of applying the USDP boundary classes
methodology used to design traditional desktop application in designing
and modelling Rich Internet Application user interface. And Devise a
methodology that can be used to design similar applications

» Gather and analyse the business requirements for the Office Management
Application using the USDP and provide the analysis and detailed design
UML models.

» |dentify the data requirements for the application and use the relation
database design theory to provide the Entity-Relations, relational and
physical database models for the application.

* Implement using Java, test and evaluate the application using Open
Source technologies and provide the source code, the binaries and the
user documentations for the application.

1.4 Organisation of this Dissertation

Section (2) of this report provides a technology background on the
methodologies adopted for this project with the main focus on Web applications
and the concepts of Web 2.0.

Section (3) on the other hand summarises the project requirements in term of
business needs and motivations. This section also briefly evaluates the
alternative applications.

Section (4) summarises the design methodology used which is based on the
Unified Software Development Process, the user interface design principles and
the relation database theory. This section also outlines the deliverables expected
from each design step.

Sections (5, 6 and 7) outline the preliminary system design, the implementation
strategy and the detailed design respectively. UML diagrams are produced as
part of sections 5 and 7, whilst section 6 concentrates on devising the
implementation strategy and putting together a new methodology that can be
used to implement rich HTML user interfaces.

Sections (7 and 8) provide an evaluation of the application developed and

conclusion of the achievement advantages and disadvantages of the new
methodology.

14

2 Technology Background

The work on this project relied upon a number of unconnected concepts in
software design and advances in the Web technology. The project tried to link
and tie these together and fills the gaps by introducing new concepts and
terminology in order to devise a methodology that can be used to effectively
design and implement Web 2.0 applications. This methodology is based these
principles [24]:

* Applying the concepts of Web 2.0

» Treating the Web as an object oriented user interface, rather than a
hypertext medium.

* The use of lightweight dynamic user interfaces that are rich, interactive
and responsive, rather than using static Web pages.

* The use of lightweight frameworks and established modelling techniques.

This section provides an overview of the background material available in
regards to the four principles mentioned above and the conclusions made.
However, before considering these four principles the main drive behind adopting
Web applications as a software interface is considered below.

2.1 Why Web applications?

A strong argument was presented in most of the referenced literature for using
Web applications, for example Rajagopalan et al. [28] has summarised the
advantages of Web application as follows:

* Web as an effective medium for information delivery

* The ability to remote access the application

» Platform independent user agent

* Reduced development efforts and cost

» Centralised maintenance efforts and instant upgrade. Also interface
changes are centralised

Added to the advantages above is the fact that Web applications have been in
existence for quite some time now, which has lead to the development of many

15

frameworks and design architectures that can be reused when moving on to Web
2.0 technologies [24]. Having said this, traditional Web applications do have
some drawbacks such as performance for example, but this project tries to
overcome these classical problems by trying out the new Web 2.0 technologies
and has come to the conclusion that the advantages of using Web applications
outweigh the disadvantages.

The strength of Web application emerged from the ability to integrate a range of
backend systems including databases. Elmasri and Navathe [13] has provided a
model for providing access to databases on the World Wide Web, although it is
outdated in terms of technology, it still represents the same architecture currently
used by Web application. Databases on the Internet are now a very popular
option for all Web applications. Elmasri and Navathe [13] and Connolly and Begg
[8] also explain the relational database design and implementation in great detail.

2.2 The Concepts of Web 2.0

The Web started as a hypertext medium for publishing documents and traditional
Web design was all about information architecture and navigational design. As
Web technologies evolved, the Web became more interactive in the fact that
users could submit and query information dynamically rather than viewing static
pages. With the ability to process information, display a rich user interface and
interact with the server without the need to submit a whole page through the use
of AJAX, the next generation of the Web has emerged; referred to as Web 2.0.

Web 2.0 is being referred to as a platform for deploying software applications [9,
10] and this platform can be used to deploy rich and usable applications on the
Web. This approach for developing and deploying software applications has
many advantages such as cost reduction, flexibility and usability. However, the
problem is that there is much hype and jargon surrounding Web 2.0 technologies
with no clear methodology that can be followed to design and implement Web 2.0
applications. This hype is documented by Gartner Research in their Hype Cycle
diagram for 2006 [27] (Figure 1) that Web 2.0 technologies which were at the
“‘Peak of Inflated Expectations” should be in mainstream use in less than two
years. Two years on, it is now apparent that Web applications are moving
towards Web 2.0 technologies as demonstrated by many Web applications today,
such as Google Apps.

It is also evident that it is not just big software organisations that want to move
towards Web 2.0, but also other large organisations as well. A survey by
Forrester Research revealed that 70% of Fortune 2000 Chief Information Officers
(ClOs) want to standardize on deploying applications to a Web browser [66].
However, of those surveyed, more than half stated that the limits of HTML
prevented them from reaching this objective. But, now with the emergence of

16

new Web technologies such as AJAX [18] the road is paved for organisations to
deploy rich and usable applications on the Web. Hence the Leading Edge Forum
[12] has recommended that businesses should adopt Web 2.0 technologies and
“‘move towards using Web browsers and rich internet applications as the
standard interface to most applications”.

visibility Mashup
4 IPYE Meb 20
Speech Recognition for "G Folksonomies

Mobile Devices & Digital Paper/E-Paper
Corporate Semantic Web — E;P Social Network Analysis
r RES Enterpn’# ?é‘
ModelDriven Architectures |
Collective Intelligence <} %RHD (termy
Event-Dtiven Architecture | { VolP
Telepresence 3 Grid Computing Int IWeh S .U
Speech-to-Speech Translation 1 Ll S i
| Offine Ajax e
Augmented Reality Ajax M‘""‘d |
Prediction Markets % RFID (Case/Palel) o
! i -
. . 'Q»O’
Biometric Payments —%_W'“s P Smannhnna .
Corporate Blogging Tablet ” Locatior-Aware Applications
J Mesh Networks: ‘*mq,og.??q&!in!erpnse Instant Messaging
tuariom Sensor Location-Aware Technology
Computing § Mobile Phone Payments

Tera-architectures
4 DA Logic
’ Asof July 2006

Peak of
Technology Trough of < Plateau of
Trigger Ex:alftl:?afitllms Disillusionment Slope of Enlightenment Productivity
time -
Years to mainstream adoption: ——

Clessthan2years @ 2tobyears @ 5fto10years A morethan 10 years & before plateau

Figure 1. Gartner Hype Cycle for 2006 technologies [27].

From the argument presented above, it's clear that the Web as a platform is now
ready for providing a front-end interface for most of the software applications.
Nowadays Web 2.0 technologies are regularly talked about and some also
believe it holds the answer to HTML limitations. However, a great deal of such
hype is over inflated expectations. In this project the author believes that Web 2.0
technologies can deliver usable and effective solutions nevertheless will need
careful design and implementation to leverage the best features of these
emerging technologies.

17

2.2.1 Rich Internet Applications

Rich Internet Applications (RIA) on the other hand are Web 2.0 applications that
enhance the user interface by incorporating some or all the features and
functionality of traditional desktop applications. The similarities between RIAs and
desktop applications are demonstrated by Figure 2 below. These similarities are
based on how the user interacts with the two user interfaces and how they
communicate with the application layer. Both applications still need to use a
database server; the desktop client is configured in client-server architecture and
accesses the database directly on the other hand the Web application uses the
application server for business logic and as a proxy to access the database
server. In both cases the user Interface logic and manipulations is performed on
the client machine.

Standalone Desktop Rich Intermnet
Application Application

[x]

\‘:") Reload data from the database?

&

J' Internal code call

Browser code running locally

Application code running locally ’ I

A\

Remote
XMLHttpRequest call

~
=T
S 3
T
Application Server
Relational Database

Figure 2. Comparison between Standalone and Rich Internet Applications

18

2.3 The Web as an OO user interface

Many user interface design textbooks, such as: Stone. et al [34] and
Shneiderman [32] conceived the Web as a hyper-textual information space, but
with emergence of Web 2.0 technologies and the ability of the Web to be used as
a remote software interface the Web, it became clear that the Web now has a
dual nature [19]. This dual nature has caused confusion for practitioners as
Garrett [19] states:

“.. user experience practitioners have attempted to adapt their terminology to
cases beyond the scope of its original application”

Garrett [19] has tried to introduce new terminology to bridge the gap between the
two natures of the Web, and provides a good starting point for user interface
design of Web software applications. The author has drawn a clear distinction
between the use of the Web as a hypertext medium and using the Web as a user
interface.

Concrete Completion
P T Aoeo

Sy LISy

I
%Mfﬁ@ i .ﬁ?ffi/
/ ////Mi/?ﬂﬂ&fy

SHETAREG. S ST
Ll AT

VT razz caEr
S LA RS TR S,

| LRI A B D)

S e akar
/ S Wrvias

*

time

*

RN I

oooooooo LI

=
Abstract Conception

Figure 3.. The duality of the Web [19].

19

In his model of the Element of User Experience (Figure 3), the author clearly
identifies the activities that need to be performed at each plane for the two
natures of the Web. This project has treated the Web as a software interface and
made the link between the steps highlighted by Garrett [19] and the design
methodologies that are used to develop the user interface for traditional desktop
applications. These methodologies are not widely used for Web applications,
although the process used is deeply rooted in the Unified Software Development
Process (USDP) and was used for a long time to model user interfaces for
desktop applications developed in languages such as Java and Visual Basic.

Having said that, the fact that the majority of available frameworks for RIA
development are Object Oriented such as JavaScript, VBScript, etc..., this
enables the Web user interface to be treated as an Object Oriented user
interface. At the minimum this can be achieved by the using JavaScript in
conjunction with the Document Object Model (DOM), which is the approach that
this project has followed. It was obvious that if the Web user interface is treated
as OO user interface the same methodology used to design the user interfaces
for desktop applications could be used to design the user interface for RIA.

The project has successfully utilised and used these design methodologies that
were largely based on the principles outlined by Bennett et al. [4] in regards to
designing user interfaces for traditional desktop applications. These can be
summarised as follow:

» Prototyping the user interface.

» Designing the boundary classes.

* Modelling the interaction involved in the interface using interaction or
communication diagrams.

* Modelling the control of the interface using state machines for complex Ul
components.

20

2.4 The use of a dynamic rich user interface

The user interface used for the Office Management Application (OfficeMA) is
based on Dynamic HTML for contents, Cascaded Style Sheets for presentation
and JavaScript to tie both together. The interaction with the server is achieved
through the XMLHTTPRequest rather than using the traditional way of clicking on
links or submitting a whole page as a HTML Form. To achieve features similar to
desktop applications (thick clients) the user interface has adopted the following
principles:

* The use of rich visual widgets

» Breaking the page model using AJAX

2.4.1 The use of rich visual widgets:

Visual widgets are components that make up the User Interface and are used to
trap user’s actions and fire events based on those actions. Visual widgets fulfil a
number of interaction styles, which are summarised by Shneiderman [33] a
follows:

» Direct Manipulation and Virtual Environments
* Menu Selection, Form Filling, and Dialog Boxes

 Command and Natural Language

The OfficeMA adopts Menu Selection, Form filling and dialog boxes as the way
users will interact with the Application. The advantage of using these interactions
styles is the fact these styles come as a natural choice for computer users using
and familiar with graphical operating systems such as Windows, this ensures that
users can find the application easy to use and can accustom themselves fairly
quickly with the controls.

Widgets available to Web applications have evolved considerably and acquired
features and properties that outweigh their desktop counterpart. The working of
these Web widgets is similar to the one followed by desktop widgets. The user’s
actions are trapped and used to fire event, which in the case of desktop
applications will be based on the operating system events API. On the other hand
Web application widgets use the DOM event model to fire events based on the
user’s actions.

Table 1, below demonstrates the fact that with advances in the Web technologies

such as DHTML and Flash plug-in, Web widgets visually resemble the widgets
available for traditional desktop applications. The two toolkits considered below

21

are the Dojo toolkit [42], which is based on DHTML and the OpenLaszlo toolkit
which offers Flash as the first option and DHTML as second option. The desktop
applications widgets are generally made available by the Operating System (OS)
visual library API such as Windows API or through the Java Virtual Machine
(JVM) in the case of Java Swing applications.

Table 1 — A comparison of sample widgets used in desktop and Rich
Internet applications

Interaction Desktop Client — Based on Rich Internet Application
Style Windows API
Dojo Toolkit | Open Laszlo Toolkit
Menu Selection
Pull Down [Tabie | wndow ep T E‘nab\ed Item ‘ View | File m |
_J DrawTable =] EE’E‘ T s r
Menus Insert » |] Table... 3 Item One
Delete Y| By Columns to the Left :‘_lcﬂL Cut Item Two
Selegt v | & columns to the Right i Copy -
—eed
e BE] Ronc phove 19 i 1 of your own theme.
pit Cels.... e Rows Below ¥
e o e S e Voo
Table T‘umEﬂrmatm n Different popup Deeper Submenu
At 4 Different popup
tntfam 3
Conyert 3
%l Sort...
Formula. ..
Hide Gridlines
Table Properties...
Tabbed Tble | Row | Coumn | c (Tap1 | Tab2 | TaD3 | }__J lassetiides | Farchessd L__J-‘SU"“'“‘“' J
Menus
11927 -2 Tah 2
Dialogue Boxes
Dialogue [x] 2 Mo dlifiec WiREOWE
boxes
g Do you want to save the changes to Document2? @ z;ﬁ:i?ésa%r;igg;o:?ant ke
e » e | > :
Form Elements
Checkboxes v /| Standard Dijit Checkhox Wl checkbox
¥ Highlight .
Disabled Dijit
| Bookmarks : ™ checkbox
Checked and Disabled Dijit
= A
Dropdown | & - e [EETRETE v,
lists : _
i New Hampshire Sarah Allen
New Jersey Peter Andrea
New Mexico Bret Simist
New York re Imister

Christian Walker

22

2.4.2 Breaking the page model using AJAX

To be able to create a web user interface that is rich and dynamic, the traditional
page model will need to broken and the user will need to be able to submit data
to the server without submitting a whole page. The ability to do this will require
the use of some logic and control on the client side. This approach can better be
explained in terms of the Model-View-Controller (MVC) architectural pattern
largely used in Web applications. Figure 4, below shows a traditional MVC Web
application with the three components of the architecture based on the server
side.

The methodology used in this project is to transfer the view component to the
browser on the client machine (Figure 5). This component in itself then follows an
MVC pattern on the client side [21]. The author refers to such applications as a
third generation Web applications as explained below:

» First generation Web applications transferred HTML mark-up between the
client and Web server.

» Second generation Web applications transferred HTML mark-up, but also
made use of AJAX technologies to transfer data only.

o Third generation Web applications transferred the HTML mark-up to the
client once. The HTML source is built on the client side using JavaScript
then only AJAX is used to transfer data thereafter, completely breaking the
page model.

The third generation Web applications described above refer to RIA and more
specifically to AJAX applications. AJAX applications are a type of RIA that uses
XMLHTTPRequest browser object as their mechanism of calling the server and
breaking the traditional Web pages model. Crane et el. [10] have discussed AJAX
applications in detail and provided four principles that can be used to design such
applications as summarised below:

The browser hosts an application, not content
The server delivers data, not content
User interaction with the application can be fluid and continuous

W N =

This is real coding and requires discipline

Breaking the page model enables the use of a rich, interactive and dynamic user
interface that only relies on the server for data rather than contents. This provides
the ability to use a Multiple Document Interface (MDI) where the user can open
and tile multiple windows to aide multitasking and the ability of have different
views at one time. This is a feature that is not available in traditional HTML page,

23

where the user is tied to the page and needs to navigate away in order to view

information on different pages.
/APPI%}" Server ‘\

Nl . || [
3 4
Access Page \
HTML HTTF Request
Render HTML
HTTP Respoms e
ol
Browser

Figure 4. Traditional server based MVC Web applications [21].

A

(/r Appl%}n Server \

XML HTML, JSON
HTTP Responze

Model

HTHL
For broweser
dizsplay
Access Hesourcs '
(KMLHTTP, XML-RPC)
HTTP Request

Controlle

Browser

Figure 5. RIA MVC Web applications [21].

24

http://future/wiki/index.php/Image:Ria1.jpg
http://future/wiki/index.php/Image:Ria2.jpg

2.5 The use of lightweight frameworks and established
modelling techniques

The heart of the OfficeMA is the domain model which is the realisation of the use
cases developed during the requirement analysis. The project followed the USDP
to design an object oriented domain model using UML. This model is use-case-
driven as it started off by realising the use cases; this makes it possible to trace
the requirements through to their final implementation and hence the ability to
test the final application using the use cases. Designing a domain model
simplifies the development process and makes it easy to use some of the
available Open Source lightweight frameworks to implement the application such
as Hibernate and Spring frameworks.

A properly designed domain model that encapsulates all the business logic
makes it possible for the user interface to directly represent and manipulate the
domain objects. As Pawson [25] has outlined in his Naked Objects design
pattern, that for a domain model designed to OO principles the user interface can
be automatically generated. This reinforces the fact that domain model is the
heart of object oriented software applications and the time well spent during the
analysis and design stages saves a great deal of time during implementation.

One of the key areas when designing object oriented applications is the ability to
persist the data from objects to database tables. Baur and King [2] present a
great deal of Object to Relational Mapping (ORM) concepts. Although the main
subject of the book is the popular Hibernate ORM framework, many of the
concepts and principles discussed can be applied to address common issues
with the conversion from objects to relational database tables.

The ability to effectively map Object into relational database tables also relies on
the fact that those Object are implemented as JavaBeans. JavaBeans are simple
Java Objects that encapsulate a number of instance variables and provide
getters and setters to update their values. These instance variables are usually
what is mapped to be persisted in the database. An architectural design pattern
that is widely used in the Java world is the POJOs (Plain Old Java Objects) [30],
which is an extension to the JavaBeans concept as it adds the concept of
separation of concerns in the fact that the POJO is only concerned about its own
business logic and does not know about how the data is persisted. Database
persistence in the POJOs pattern is done using the Data Access Object (DAO)
design pattern [30].

The object oriented analysis and design principles used in this project are largely
based on the concepts outlined by Bennett et al. [4]. The authors present a great
deal of methodology in the object oriented design using UML, which is largely
based on the USDP. The authors have discussed methods such as use case
realisation is discussed in detail. On the other hand the popular Domain Analysis

25

method also termed the Collaboration — Responsibility Card (CRC) is only briefly
mentioned. The domain analysis methodology is considered in more detail by
Arrington and Rayhan [1]. Although there are differences between the design
principles used by Bennett el al. [4] and Arrington and Rayhan [1], they
compliment each other in terms of producing an analysis and detailed class
diagrams. Arrington and Rayhan [1] also consider the implementation using the
Java technology which presented some foundations for the methodologies used
in this project.

2.6 Usability Requirements

In addition to the OfficeMA functional and technical requirements there were also
some usability requirements which directly related to the client requirements that
the application should be easy to use, responsive, interactive and user friendly.
These requirements are generic and not specific which makes it hard for the
designer to be able to translate and apply them to the final product, for this
reason a number of established user interface design principles were followed.
Some of the usability requirements such as performance and data refresh
automatically emerges from the fact that the application will be designed as a
RIA.

2.6.1 User Interface (Ul) Design Principles

The OfficeMA user interface was designed by using and adapting the user
interface design principles outlined by Shneiderman and Plaisant [33] and Stone
et al. [34]. The user interface design field is a large area and considering that the
OfficeMA is a hybrid of web and desktop applications it was crucial to devise a
number of Ul design principles and rules that can be used to design the user
interface.

Shneiderman and Plaisant [33] outlined the activities required to design and
implement an interactive user interface as follow:

e Determine users’ skill levels

* Identify the tasks

» Choose an interaction style

» Use of the eight golden rules of interface design.

26

The authors refer to these eight golden rules as follows:

Strive for consistency

Cater for universal usability
Offer informative feedback
Design dialogs to yield closure
Prevent errors

Permit easy reversal of actions

Support internal locus of control

© N o o bk wbd =

Reduce short-term memory load.

Stone et al. [34] on the other hand specify a list of design principles and highlight
the fact that these principles are usually abstract and difficult to apply due to their
generality. To help make these principles easier to apply the authors indicate that
these principles can be translated into design rules, which are low level and
highly specific instructions to the designer. The authors then list a number of
design principles as follows:

» Visibility - It should be obvious what a control is used for

» Affordance — It should be obvious how a control is used

* Feedback - It should be obvious when a control has been used.
» Simplicity — Keeping the Ul as simple as possible

» Structure — Organising the Ul in a meaningful and useful way.

» Consistency — Uniformity in appearance, placement and behaviour with
the Ul

» Tolerance — Preventing the users from making errors

2.6.2 Web pages design principles

Design principles for Web sites are based around the mnemonic HOME-RUN
[34] which stands for High quality contents, Often updated, Minimal download
time, Ease of use, Relevant to user’s needs, Unique to the online medium and
Net-centric corporate culture. These principles are more applicable to Web pages
than functionality-oriented Web applications that are usually restricted to a limited
group of people who use it on regular bases. Having said this, the fact that Web
applications utilise the Web as their platform some of the above design principles
will also need to be incorporated in Web application and in particular RIA.

27

Even though RIA are designed to behave like desktop application there is a
fundamental difference as shown in Figure 2, RIA rely on the server processing
for manipulating the data before sending it to the client side for display. This adds
an extra layer of processing and potentially a delay and data inconsistency
between the client and the server. Hence two of the design principles mentioned
above for Web sites will also need to be applied to Web applications in general
such as Often updated and Minimal download time principles. These address the
performance and data refresh issues in Web applications. Other principles such
as High quality contents, Unique to online medium and Net-centric corporate
culture are not applicable to the application designed in this project.

2.6.3 Design rules for the OfficeMA

For the purpose of the OfficeMA the following list of design rules have been short
listed. This list accommodates principles from both Shneiderman and Plaisant
[33] and Stone et al. [34]:

» Visibility and Affordance — The user interface will make it clear what
controls are used for and how they are used to adopting and using
standard control that most graphical operating system users are familiar
with.

» Feedback — The user interface will provide feedback to user’s actions in
the form of messages or animated image when data is being retrieved
from the server

» Simplicity and Structure — The user interface will be design to be simple
and to follow an MDI user interface with menu, tool and status bars. This
should be a familiar structure to normal desktop users. Complex and long
forms will be organised into tabs or trees using the tab or the tree widget.
The application will also avoid completely the use of horizontal scrolling by
offering the ability to maximize the windows on which the information is
displayed. Vertical scrolling in only used where necessary.

» Consistency — The user interface will be made consistent and the same
approach followed throughout the application.

» Tolerance — The user interface will be designed to prevent users from
making errors by performing interactive validation to user’s input which
indicates to the user immediately if they provided an invalid value for an
input. The user interface will degrade gracefully by providing error
messages and enabling the user to retry the action. The user interface will
enable the user to cancel any action they have started before completing
it.

* Closure — Dialogue boxes and windows will be designed in a way it is
clear to the user which dialogue is used for viewing or updating

28

information. It is also made clear when input is required by the user and
when the action has been completed successfully. Feedback should be
given to the user after the user submits their updates and current data in
the application should be refreshed accordingly.

» Performance and Data Refresh — Since the data is not managed locally
and application relies on the server to retrieve this data, performance is
added as one of the usability rules for the user interface. Ul widgets
should be rendered in acceptable time frames. The same applies to data
retrieval from the server for this reason the server should use caching and
other mechanisms to ensure timely responses. The system will also
provide the ability for the user to refresh the data where possible or
provide automated data refresh updates whenever a window is opened.

2.7 Accessibility

Accessibility on the other hand is to ensure that the system developed is
accessible to people with disabilities. Some authors go a step further and define
accessibility as making the use of the system easier for all users. The W3C
provides a number of Web content accessibility guidelines and defines these
under the term universal access, which it describes as follows [34]:

“To make the Web accessible to all by promoting technologies that take into
account the vast differences in culture, language, education, ability, material
resources, access devices, and physical limitations of users on all content’

It is clear from the description above that the emphasis is to provide accessibility
for all rather than just for people with disabilities. For an application such the
OfficeMA the scope of the accessibility is even smaller than what is described by
the W3C above. This is mainly due to the fact that the application is limited in its
use to a number of staff who are computer literate and are constraint in their
resources to the ones identified by their employer such as which browser or
operating system they use. The need to consider some of the Web accessibility
rise from fact that the application is Web based and platform independent so that
the users can try it in any operating system with a browser, an issue that does not
affect desktop applications because these usually only run in specified OS.

Due to the time and budget constraints of this project accessibility was
considered in terms of the ability of the application to run in a specified
environment with minimum specifications. Employers can then ensure that these
perquisites are met before installing and using the application. If the OfficeMA
goes into mainstream use, then future work will be needed to consider the
accessibility to people with disabilities.

29

2.8 Summary

It is clear from the background material presented above that now there is more
demand on the Web to host many types of applications, ranging from the basic
Web application to the more sophisticated Rich Internet Applications. Basic Web
applications attempt to utilise the Web as an application medium by using Web
pages and trying to apply some of the Web design principles to these
applications. The problem is that these design principles are mainly for
information oriented Web sites where navigation and contents is at the heart of
the Web design principles. Consequently trying to push functionality-oriented
applications to fit this paradigm may raise many issues in some cases as some
application might not fit into the Web design paradigm.

The root cause of the above complications is due to the hypertext nature of the
Web which is oriented toward contents and information rather than functionality.
However, although the Web is intrinsically a hypertext medium, the foundations
are there for an Object-Oriented and functional oriented medium similar to the
one used for desktop applications. This section has demonstrated these
similarities as summarised in the Table 2 below.

Applications such as the OfficeMA designed as part of this project, are more
functionality oriented than information oriented. OfficeMA was designed to be
used by a group of people possibly on a daily bases to achieve the same tasks,
rather than to browser for contents or new information. This type of applications
is more suited to be a desktop application than a Web application. However, it is
desired to have the best of both worlds, the usability of desktop applications
combined with the many features of Web applications such the ability to run on
heterogeneous systems, centralised maintenance, remote access, etc... to
mention only a few.

Table 2 — Similarities between desktop applications and Web capabilities

Application Type | Object Oriented Event-Model Widgets
Native desktop Yes Based on the OS Based on OS GUI
applications API widgets
Web applications Yes, based on Based on the Based on HTML
based on HTML JavaScript DOM event model widget and
customized widgets

Web applications Yes, based on Based on Based on Vendor’s
based on Plug-ins Vendor’s Vendor’s implementation.
such as Adobe implementation, implementation
AIR and Microsoft but most use
Silverlight JavaScript, C#,

Ruby, etc...

30

When designing and implementing an application such as the OfficeMA the
project used the traditional user interface design principles used for traditional
desktop application. By not doing so and trying to follow Web design principles
would mean throwing away many years of Graphical User Interface design
principles as stated by Nielsen [22]. The project has clearly demonstrated that
the application of these traditional design principle to the user interface and
treating it as a Graphical User Interface rather than a Web User Interface has
resulted in smooth, cost effective and usable design that enabled the
implementation of complex functionality.

31

3 Project Requirements

3.1 HR Requirements of Small Businesses

The majority of the requirements for this project have been identified for a small
business to manage their human resources efficiently and in a cost effective way.
A number of human resources areas have been identified in consultation with the
client as candidates for automation using the OfficeMA. These areas can be
summarised as follows:

» Staff — A module that can be used to create, update and view staff details

» Expenses — A module that can be used to create, submit, approve and
pay expenses.

» Tasks — A module that can be used to indicate to staff members that they
have an action to perform in the application.

* Holidays — A module that can be used to request and approve holidays
« Timesheet — A module that can be used to record the staff timesheet

» Settings — A module that can be used to change the system settings so
that the application is configurable and can fit the need of a number of
small businesses

+ Pay — A module that can be used to calculate the staff pay and produce
payslips

The author of this dissertation also believed that based on the number of Small
businesses in the UK, such an application can satisfy the requirements and
benefit the majority of other small businesses. Subsequently the author has
conducted a survey as part of this project (Appendix A) to identify the methods
currently used by small businesses to manage the areas recognized above. The
survey also aimed at determining if these small businesses have made use of
any existing software, and if they have not, to identify the reasons why existing
software applications or the development of customised applications have not
been pursued.

The businesses surveyed that have 15 or less staff relied on paper or
spreadsheet based process for the areas identified above in except to the Pay
area which was either outsourced or done in house using Sage products [59].
Sage has established a strong market hold in the accounting software
applications arena and provides products that satisfy the need of most
businesses at a reasonable price. Based on this, it was decided to drop the Pay

32

module from the OfficeMA and to concentrate on filling the gaps by providing a
system to cover the other areas that are currently done manually.

3.1.1 Obstacles facing small businesses

Even though all the small businesses surveyed have computer networks in their
offices, none of them has utilised it to enable the automation of the above
mentioned Human Resources (HR) areas. The main obstacles that faced these
businesses in obtaining licensed software or developing their own bespoke
applications have been identified as follows:

The huge licensing fees associated with established software products
and the infrastructure that is usually required to run them.

The complications of large software products that usually contains much
functionality than what is required.

The lack of internal IT skills or budget required to develop in-house
bespoke applications.

The lack of budget needed to outsource the development of a bespoke HR
application to an external specialized company.

Most of the budget applications on the Internet are either standalone to be
used by a single person or are sold in hosted mode where the data is held
outside the small business office.

3.1.2 What is needed and why?

The small businesses surveyed have expressed a strong need for a cost
effective office management application for the following reasons:

Reducing the time used to manually process and administer staff,
expenses, holidays and timesheets.

Enabling better control and archiving of electronic forms and records.

The ability to process, complete and submit requests and forms remotely
without the need to physically be in the office.

These businesses have also identified the following as must have features and
characteristics of such an application:

Cheap to buy, install and maintain.

Simple to use and manage without the need for extra skills.

33

e Can be installed in-house using existing network and computer
specification and capabilities

» Can be run on the Intranet and possibly over the Internet.

* An easy to use application that is user friendly, intuitive, interactive and
responsive.

» A secure application that can be accessed over the Intranet or the Internet
in a secure way. Sensitive data should also be held securely such bank
account details and users’ passwords.

* Provide roles for application users as follows:

1. Administrator — A staff member who have unlimited access to the
application and can create and modify staff details.

2. Accountant — A staff member who is primarily deals with staff pay,
taxes and the paying of expenses. Majority of the times in small
businesses this role is outsourced to an external accountant who
needs to be able to log remotely and have a view of the staff
expenses, timesheets and details. The access rules for this role
should be controlled by the administrator.

3. Regular Staff — Any one else in the small office who use the
system to view and update some of their details and submit
expenses, holidays and timesheets. The access rules for this role
should be controlled by the administrator.

* Provide authentication, authorisation and role based restrictions to enable
administrators, accountants and staff members to login securely and
access data that is allowed for their roles.

3.1.3 Alternative applications

Based on the small businesses requirements identified above the project
researched a number of alternative software applications to the OfficeMA
developed by this project and assessed them in terms of these requirements.
Table 3 below summarises these applications and some of the issues that make
small businesses reluctant to adopt them:

34

Table 3 — Alternative software applications and their issues

Software Vendor Advantages Small Businesses Issues
Application
SharePoint [53] Microsoft The ability to customize » Big licence cost
the forms and templates . i
and add more * Requires Microsoft
functionality by adding server operating
plug-ins system and Microsoft
SQL server at extra
Suitable for large cost
organisations
« Expertise required to
maintain and manage
adds extra cost
Oracle HR [55] Oracle A wide range of » Big licence cost
functionality. . Requires other
Suitable for large software components
organisations at extra cost
« Expertise required to
maintain and manage
adds extra cost
Tommie UK [68] TOMMIE Reasonable price per e Contains a great deal

Systems Ltd

user per day

A wide range of
functionality

No required resources as

it is a Web based system

of functionality that can
be distracting and
hiders quick learning

e Only offered in hosted
mode. This is a
problem for small
businesses wanting to
keep the system in-
house and may be on
the Intranet only.

35

3.2 Software used for the Project

The main drive behind this project is the development of a cost effective office
management application by trying to use effective design principles to reduce
design cost and a number of free and Open Source technologies and tools to
reduce the implementation and deployment cost. These free technologies and
tools are listed in (Appendix |) and range from the programming languages used
to implement the application to the component and frameworks used during the
implementation. It is also clear from the requirements that such an application
should be cost effective to install and maintain such as the ability to be deployed
on Window or Linux based systems.

3.2.1 Java Web Components

For the reasons mentioned above the project has decided to use the Java
programming language to implement the OfficeMA. The Java programming
language has come along way and has matured and established itself as an
effective and cheap Object Oriented programming language. Java is also well
suited to multi-tier enterprise applications developed and can benefit from the
availability of a wide range of Open Source frameworks and products. Java is
also platform independent and Java applications can be run on a variety of
operating systems. With the advances in the JVM and the hardware components
such as memory and processor speed nowadays, Java now performs well and is
highly flexible.

In comparison to other technologies such as Microsoft .NET, there is a
requirement and dependency on other proprietary software such as Microsoft
Internet Information Services (IIS) Server and the Microsoft Windows operating
system. Other Open Source technologies such as PHP are geared towards rapid
scripting development for Web sites or simple Web applications. However, the
maintainability of the code becomes unmanageable once the application requires
a large number of software components.

This project used the Java programming language to implement the business
logic and the JavaServer Pages (JSP) to implement the Web pages. Other
technologies such as HTML, CSS and JavaScript were also used on the Web
pages development. This approach aides the separation of concerns in such a
way that the business logic is kept separate from the display and Web pages.
This enables the future expansion of the application to use a different display
technology if required. Other free Java based frameworks and products were
also used to build the OfficeMA such as Hibernate [48], Struts [63], Spring [60]
and Tomcat application server [67].

36

4 Design Methodology

This section outlines the software design methodology used for this project. The
methodology is largely based on the USDP detailed by Bennett et al [4]. The
main focus is on Model - Driven architecture to enable the business-level
functionality to be modelled by standards such as UML and Entity-Relations
Model. This approach reinforces the focus on business first then technology,
enabling the business model to exist independent of any platform for technology.
One advantage of this approach is the ability to freely choose the target platform
and technology or switch from one to technology to another without having to
modify the business model [15].

4.1 Project Lifecycle

The software development activities of the project followed the Traditional
Waterfall Lifecycle (TLC) model to design and implement the OfficeMA (Figure 6).
One of the drawbacks of TLC is the unresponsiveness to change in client
requirements during the project. Another approach to use to overcome the
change in client requirements is the Waterfall lifecycle with feedback loops, yet
again it is not without drawbacks and the resulting iterations can prove very
costly [4]. For the purpose of this project with fairly clear requirements from the
start of the project, the TLC despite its drawbacks offered a very structured
approach to systems development.

Requirements
Gathering
Requirements
Analysis

Implementation

Installation

Figure 6. Traditional waterfall lifecycle model.

37

4.2 The Software Development Process

The project followed the development process outlined by Bennett, et al [4,
pp119]. This process is consistent with the USDP and incorporates techniques
from other sources such as Arrington and Rayhan [1]. The USDP was favoured
over other software development methodologies such Agile development [65]
due to the clear requirements which were not likely to change over the lifecycle of
the project. The main activities that were followed are summarised as follows:

» Requirements capture and modelling
* Requirement analysis

» System design

» Class design

» User interface design

» Data management design

» Construction

» Testing

* Implementation

These activities are shown in Figure 7 below. Some of the activities depend on
others, but some such the class design, user interface design and logical
database design can be done in parallel.

38

Business Planning: Business Case, Budget

Define Requirements: Requirements Specification

Detailed Define High Level Essential Use Cases
Planning

Create Prototype

Object Oriented Analysis: Low Level Essential Use Cases,
Conceptual Model, Sequence diagrams

Object Oriented|Design:

i Design User Class Diagrams, Logical Database .
Build Interface Collaboration Diagrams, Desian Write
i 9 D tat
State Diagrams ocumentation

and Help

ili i : Physical

lity Test
R e (freine Database Design
Testing
Deployment

Figure 7. Activities that lead to software deployment, adapted from Grand [21].

Below is a summary of the main activities motioned above alongside their
techniques and key deliverables.

4.2.1 Requirement Capture and Modelling

Techniques

1. Requirement elicitation using:

* Background reading

» Fact finding interviews with the client
» Observation

» Document sampling (Appendix B)

* Questionnaires.

In this project two of the above requirement elicitation methods were used, these
were: fact finding interviews with the client and document sampling of paper or
spreadsheet based forms. These two were sufficient to capture the requirement
for the application.

39

2. Use case modelling to be carried out and documented as follows:

» Use case diagram.
» Use case description

* One or more flow of events (i.e. Normal or baseline flow, alternative flows
and exception flows)

» Activity diagram. The use of activity diagrams to aid the understanding of
the use case diagrams is outlined by Arrington and Rayhan [1]. This is
because activity diagrams are less technical than the sequence diagrams
and their use at such an early stage can aid the understanding of the
business stakeholders.

3.Initial system architecture can be developed to help guide subsequent steps
during the development process and can be refined and adjusted as the
development process progresses. The initial system architecture is usually the
package structure of the system.

4. Prototypes of some key user interfaces are to be produced to aid the
requirement understanding and gathering.

Key Deliverables

e Use case model
* Requirements list
e Initial architecture

* Prototypes

4.2.2 Requirement Analysis

40

Each of the use cases produced during the requirement gathering and modelling
stage are separately analysed to identify the classes that support it.

Techniques

1. User case realisation is used to derive communication diagrams to model
the object interaction. The models for each use case are then integrated to
produce an analysis class diagram.

2. Domain analysis can also be used to derive an analysis class diagram.
Textual analysis and Class Responsibility Collaboration (CRC) Cards are two
of the techniques widely used at this stage.

Use case realisation was favoured over domain analysis and used in this project
for two reasons, the first reason is the fact that it is part of the USDP and domain
analysis is not, and the second reason is that the extra modelling involved with
the use case realisation method help in capturing all the classes that satisfy the
use case through the use of collaboration diagrams. The extra modelling involved
also helped in understanding the steps required to satisfy the use case.

Analysis class diagrams can be classified into three stereotypes: boundary,
control and entity. Control classes represent control, coordination and
sequencing. The USDP recommends the use of at least a control class for each
use case [4]. On the other hand boundary classes model the interaction between
the system and its actors. There are two types of boundary [1]:

» User Interfaces — Allow the system to interact with humans. This will form
the starting point for the user interface design.

» System Interfaces — Allow the system to interact with other systems.
Entity classes are used to model some of the real-life object or real-life events.
Instance of entity classes will often require persistent storage of information

about the things they represent. This will also be the starting point for data
persistence requirements and database design.

Key Deliverables

* Analysis models such as analysis class diagrams and communication
diagrams

41

4.2.3 Class design (Detailed design)

The aim of this stage is to elaborate each use case to include design decisions
and enhance the analysis class diagram to produce a detailed design class
diagram.

Techniques

1. Interaction diagrams are used to show detailed object communications.

2. State diagrams are used for objects with complex state behaviour if any.

3. Detailed design class diagram is produced by the integration of the separate
models additional classes are added to cater for interaction with the user
interface and database.

4. Design patterns as explained by Gamma et al. [17] are applied to the class

diagram to address common problems in the domain model.

Key Deliverables

» Design models such as detailed class diagrams, interaction diagrams and
state diagrams.

4.2.4 User Interface Design

Interface design is very dependant on the class design. The user interface
boundary classes identified earlier are enhanced by adding more details to model
the user’s interaction with the system. The user interface followed the design
rules outlined in section (2).

Techniques

1. Prototyping the user interface by following these activities.
2. Designing the boundary classes.
3. Modelling the interaction involved in the interface with sequence diagrams.

4. Modelling the control of the interface using state machines.

42

Key Deliverables

» Design models with interface specification.

4.2.5 Database Design

The database development starts from the persistence requirement for the
application and relates to the presence of entity classes in the analysis class
diagrams. These entity classes usually require the persistence of some or all of
their details. The relational database design principles are followed here (Figure
8) as outlined by Elmasri and Navathe [13] and Connolly and Begg [8].

Besides designing the database layer the project also considered the Object to
Relational Mapping (ORM) layer (Figure 17), which was used to decouple
classes from the mechanism by which instances are stored in the database [2].
As stated by Bennett et al [4] one favoured approach is the use of a persistence
framework, the main feature of which is the use of database brokers or database
mappers. These mediate between the business classes and the database and
are also responsible for Creating, Retrieving, Updating and Deleting (CRUD)
objects.

Techniques

Elmasri and Navathe [13] has summarised the phases of database development
as follows:

Requirements collection and analysis.
Conceptual database design.

Choice of DBMS.

Logical database design, which involve the mapping the relations from the
conceptual model into the target DBMS and View design

o N =

5. Physical database design.
6. Database system implementation and tuning.

Connolly and Begg [8] provide a more concise design methodology that was
followed on this project, it can be summarised as follows:

» Conceptual database design, such as ER modelling.

» Logical database design, such as relational modelling.

43

» Physical database design, such as DDL, DML, physical storage, indexes
and security measures.

The main reason for choosing these concise steps, is the fact that the focus on
this project is on the domain model (classes) developed using the USDP rather
than starting from data requirements. As mentioned above the requirements for
the database model come from the persistent entities in the analysis classes,
which have the required attributes and their types already defined. This also
means that a great deal of the design is already done at the analysis stage.

Key Deliverables

e Conceptual data models.
« DDL and DML SQL

establishing
requirements

data
requirements

data analysis

'

conceptual
data model

database design

logical
schema

implementation

Figure 8. Sample Model of Database Development [23].

44

4.2.6 Construction, testing and implementation

Techniques

1. Implementing the business logic.

2. Implementing the user interface.

3. Implementing the database.

4. System documentations and help files are written

5. Completed system is deployed and tested. Found bugs are fixed in
accordance to severity and priority, some are even left in the final product if

these were accepted by the client and the bugs are of low priority. The final
tested product is released for deployment

Key Deliverables

» Constructed system documentation.
» Source code for the developed application

* Installed system.

45

5 Preliminary System Design

The preliminary system design aims at providing an analysis model, which
contains a user interface prototype and a number of UML models such as use
case diagrams, activity diagrams, communication diagram, sequence diagrams
and finally an analysis class diagram.

5.1 Requirements Gathering

The requirements for the OfficeMA were captured through a number of fact
finding interviews with the client and the sampling of various documentations
(Appendix B). The results of the fact finding interviews have been incorporated
into the use case descriptions. These interviews were also conducted during the
analysis stage to clarify outstanding issues. The Jude UML CASE tool (Appendix
K) was used to construct and produce the various UML models used during the
requirements gathering, requirements analysis and design phases of this project.

5.2 Initial System Architecture

The initial package structure of the system is shown in Figure 9 below. This is
based on the logical packaging of the high level use cases of the application, and
can be summarised as follows:

» Staff management

* Expenses management

* Holidays management

» Task management

» Time booking management

» System settings management

46

Office Management System Package Architecture
]]
Holidays Management |- _______ oo~ Time Booking
7
7 - .- .
: — !
Expenses Management
: A
Tasks Management
— Tl N *a . \if
Staff Management | _________ .- > System Settings Management
Authentication and Authorisation

Figure 9. Initial package architecture for OfficeMA

5.3 Requirement Capture and Modelling

5.3.1 Prototyping the User Interface

As part of the requirements capture process, a number of prototypes have been
developed to aide the use cases and the clarification of the requirements with the
client. Methods used to create prototypes for traditional desktop applications
were used in this project. The author has outlined some techniques that can be
used to create prototypes for Rich Internet Applications [11]. These techniques
can be summarised as follows:

» Get a catalogue of currently used visual widgets such as controls,
commands, pointers and windows widgets. An example is the Visual Index
on the Microsoft Window Vista User Experience guide [71].

o Short-list the widgets that can be included in the prototype and the
completed user interface later on. These are widgets that will be available
in the toolkit used for the user interface implementation or can easily be
developed.

» Construct the user interface prototype using these widgets.

47

5.3

.2 Staff Management Requirements

Requirements Summary

The application should be able to hold employee details and support user roles,
so that different information can be updated by different roles.

R1

 Enable admin users to configure access rights of various users of the
system depending on their role

« The ability to update/add employee details such as name, contact
numbers, email address, date joined, address, national insurance number,
bank details, grade, salary, holiday entitlement, tax code etc...

Requirements List

The system should enable the administration of staff details using the. Such
as adding new staff, changing and viewing staff details in which case the staff
member will receive a task to review the changes. Administrators should be
able to add/view/edit all staff details. Normal staff should be able to edit some
of their details in which case the administrator should get a task to verify
these updates. Normal staff should also be able to view a brief summary of
other staff details.

Table 4 — Requirements summary for staff management

No. | Requirement Use Case(s)

1.1 | Staff to view their personal details 1.1

1.2 | Staff to edit some of their personal details, such as 1.5
contact numbers and address

1.3 | Staff to search for other staff members by name, id or 1.2
current project, work-stream, employee type, etc...

1.4 | Staff to view a brief summary of other staffs’ details, 1.3
such as email address, name, photo, phone numbers
and grade

1.5 | Administrator and Accountant to view complete staff 1.4
details

1.6 | Administrator to edit staff details, such as change of 1.6
grade, salary, online access

1.7 | Administrator to add new members of staff such as 1.7
personal, address, employment and online access
details

48

Use Cases

-‘____\k___‘_‘*—-—

Accountant

Administrator

™~

Add Staff .

Staff Management

Edit Personal
Details

|
1
"

'
]
[

I
<<inc|u$ﬁe>>
s ‘ 1
AR ' Edit Employment
' Details
View Brief Staff H
Details Condition [R
{actionType = Edit \ S
A ! =<extend="
[;
'
]
!

'
S o Edit Online
v e Access Details
View Complete H L .
Staff Details 1 L/, _s=eitend==
—_— ' | < -
Exension Points &7

Action type
Edit Staff Details

Edit Staff
Personal Details

<<=e>dend>>

Get Available
Grades list
“=include>»> Get Availahle
- . Work streams
-7 =sinciugess- -~ 7
T - - =gincludess

>

Get Available Online

N
. ~ Access Roles
=zincludes== =y

Get Available
Staff

Figure 10. Use cases for staff management.

Use Cases summary

The detailed use case descriptions are provided in Appendix C.

Table 5 — Use cases summary for staff management

No. | Use Case Description

1.1 | View personal details The current member of staff views their personal
details

1.2 | Find staff Search for a member of staff or browse all staff
details

1.3 | View brief staff details | Regular staff members can view a brief summary
of other staff details

1.4 | View complete staff Admin, accountant users can view all the details

details for any member of staff

1.5 | Edit personal details Members of staff can edit their personal details.
Regular staff can edit only a subset of their
details. Admin users can edit all their personal

details
1.6 | Edit staff details Admin users can edit other staff details.
1.7 | Add Staff Add a new member of staff. First all the Available

grades, work-streams, online access roles and
staff names are retrieved. The admin user
completes the personal, bank, address,
employment and online details.

5.3.3 Expenses Management Requirements

Requirements List

R2 The system should allow members of staff to enter/save/submit their
expenses. The system should also notify approvers to approve/pay submitted
expenses and allow approvers to either approve or reject an expense

Table 6 — Requirements summary for expenses management

No. | Requirement Use Case(s)

2.1 | Staff to view their saved/submitted expenses 2.1,2.2

2.2 | Staff to be able to edit their saved expenses and 2.4
save/submit them

2.2 | Staff to be able to add new expenses, the system should 24,23

detect if saved expenses already exist for chosen period.

2.2 | Staff can only edit saved or rejected expenses

2.3 | Expenses period should be configurable, but defaults to a
months

2.4 | Staff can only edit/create expenses for periods that does
not already have submitted expenses

2.5 | Expenses approver should be notified through tasks/email
when an expense is submitted

2.6 | Expenses approver should be able to approve/reject 2.6
submitted expenses
2.7 | Accountant should be notified when an expense is 2.7

approved and should be able to pay it

2.8 | Staff should be notified through tasks/email when their
submitted expenses status change

2.9 | Staff should be able to search their expenses and 21,22
categorise them by year/status
2.10 | Approvers should be able to search submitted expenses 2.5

50

for which they are responsible for approving and
categorise them by year/status

2.1

Staff can either fill in a mileage or an amount. Current
mileage is added to previously entered mileage and has
different rates of payments.

2.4

212

The system should allow the staff to enter a mnemonic
when entering expenses, an entered mnemonic updates
type, description and amt/miles, any changes to these
fields will update the saved mnemonic.

2.4

213

Staff should be able to export location entries from
timesheets using the location mnemonic

2.4

214

A saved or submitted expense should contain at least one
expense item.

Use Cases

Expenses Management

==gxtend==

== LY
- Condition { expensesStatus =
saved or rejected}
extension point: Expenses
status

Edit Expenses

Condition {saved
expenses exist for ’
expensesPeriod} !

-
==imcjudes=:=
~

’ . ;
il s\ ’

N
~ B ,
==dutgnd== z=zputend==
4 ~

.
.
.
»
’
#
;
.

£ kY
Py szinciudess - -7 .| Condition {
b -7 ‘. expenses status is
-7 . submitted and is
! appraver for current
expense}

Add Expenses

Extension Points
Expenses Period

¢
;

iew Staff Expenses
Extension Points
Expenses status
Approver

Approve Expenses

Extension Paoints
Missing Info

Condition { Missing
Infois true}

s=efendss - - -

Reject Expenses

View Expenses

Extension Points
Expenses status

:
A
deincludes=»

1
<=include==
'

I
)

[
|
[
|

Pay Expenses

/ﬁ:coun‘tam

Figure 11. Expenses management use cases

51

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 7 — Use cases summary for expenses management

No. | Use Case Description

2.1 | Find Expenses Staff members can find their expenses using an
expenses browser, where they can search by year or
expenses status. Approvers can also search
expenses they are approving by staff name, year or
expenses status

2.2 | View Expenses After finding an expense the staff member can view
its details.

2.3 | Add Expenses A staff member can add new expenses after
choosing the period of the expense if a saved
expense exist for the chosen period then the staff
edits the expense using the edit expenses use case

2.4 | Edit Expenses After viewing an editable expense or trying to add a
new expense for a period where a saved expense
already exist the staff member is allowed to edit the
expense and cancel, save or submit their changes

2.5 | View Staff The expenses approver should be able to view the

Expenses staff expenses in pending/approved or paid states

2.6 | Approve/Reject The expenses approver should be able approve or

Expenses reject the staff expenses in pending state
2.7 | Pay Expenses The expenses approver or the accountant should be

able to pay the expenses in approved state

52

5.3.4 Authentication and Authorisation Requirements

Requirements Summary

R3 The system should authenticate users before allowing them to use it. Each
user should have a user role as well to determine if they are authorised to
perform a specific action

Requirement List

Table 8 — Requirements summary for authentication and authorisation

No. | Requirement Use Case(s)

3.1 | The system should run on a secure web server using
HTTPS

3.2 | The user should provide a username and password to 3.1
login to the system

3.3 | The system should authenticate the user against stored 3.1
user details and allow access if details match

3.4 | The system should lock the user account after three 3.1
unsuccessful login attempts and create a task for the
administrator

3.5 | After a user logs in successfully the system should assign 3.1
the role for the user in order to determine if the user is
allowed to perform a specific action or not

Use Cases

Authentication and Authorisation

Authenticate User
=zinclude=7
i Login
Staff “a=ingludes=

Figure 12. Login use case diagram

53

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 9 — Use cases summary for authentication and authorisation

No.

Use Case Description

3.1

Login The member of staff provides their username

the details provided.

and password to login and the system
performs authentication and authorisation on

5.3.5 System Settings Management

Requirements Summary

R4 The user should be able to change some of the settings in the system, such
as holiday roles, projects, work streams, etc...

Requirement List

Table 10 — Requirements summary for system settings management

No. | Requirement Use Case(s)
4.1 | Administrators should be able to configure time booking 41,42
management settings:
* Add/Edit a work stream
* Add/Edit projects to a work stream
» Configure the working days and beginning of the
week
» Configure timesheet entry unit (e.g. hour/minute)
4.2 | Administrators should be able to configure expenses 41,4.2
settings:
* Add/Edit expenses categories
» Add/Edit list of expenses approvers
» Add/Edit expenses period (e.g. 1 month, 1 week)
4.3 | Administrators should be able to configure staff 4.1,4.2

management settings:
» Add/Edit list of available grades (consultant, senior
consultant, principal consultant, director)

54

o Add/Edit list of online roles (staff, administrator,
accountant)

» Add/Edit list of available personal managers

4.4

Administrators should be able to configure holiday
management settings:

* Add/Edit list of holiday approvers

» Add/Edit holiday rules, entitlement, holiday year
start/end, carryover limit, carryover cut-off.

41,4.2

4.5

Administrators should be able to configure task
management settings.

* Send emails when creating tasks.

41,42

Use Cases

System Settings Management

==edendss - -~
-
Update my settings
/ <G-- =zgytend==
— ..

Staff
iy
Change Available Grades
T
<<e>&e\nd>> <<e>d9nd;>
1
s<arends> Change Online Access
View system settings ~ J~ "7~ Roles
/ <- o
- <seqtend==. 77 ==extent
- . | » T
p , ! B
Administrator K ~I ==gidend=»
Update Expenses H \ . Update Work Streams
.

Settings

i’ ! *

, '

’ I 1

')
;. : Save settings ==incllde==
f \
<<e)dgnd>> <<ex1;and>> 1
. I

I

. 1 Add Project
management settings |

Condition { add new

Update Timebooking
settings

Change Online
B Password
Update Preferences
Change Holiday Rules

__Select projects
Update Task ' extension points
[1] e |asl

project option selected) [) STedend>>

Add projects

Figure 13. System settings management use cases diagram

95

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 11 — Use cases summary for system settings

No. | Use Case Description

4.1 | View system Settings | An administrator can view the system wide
settings and update/save them

4.2 | Update system setting | After viewing the system settings the
administrator updates the setting

4.3 | Update my settings A staff member can change their online password
or update their online preferences such as
desktop background colour, etc...

5.3.6 Time Booking Requirements

RS

Requirements Summary

The staff members should be able to book their time to project in their work
stream. The staff members should also be able to enter any other type of
absence through the time booking system, such as unpaid leave, sick leave
and holiday. The system should cross check any holiday entered in the
timesheet against the holidays request/taken. The system should also be able
to auto populate the timesheet with holiday entries when these exist in the
holiday subsystem

Requirement List

Table 12 — Requirements summary for time booking

No. | Requirement Use Case(s)
5.1 | Staff member should be able to view their time sheet and 5.1
if they choose they can add, update or edit entries and
then save their timesheet
5.2 | Staff members should be able to view a summary of their 5.2
timesheet entries for a given period and filter by project
5.3 | Administrators should be able to view other staff 5.1
timesheets
5.4 | Administrators should be able to view a summary of other 5.2

staff timesheets and filter by project

56

5.5

The system should be able to auto populate holiday from
the holiday subsystem when the staff member is
completing the relevant period

Use Cases

,—-""'_F'-’—F'
i““‘x
Staff

PN

—_—

Administrator

iew timesheet for
Staff

Time Booking

View Timesheets
summary

Add Timesheet

items

<<e)dg;nﬁ>>" -7

----- =etend>> ____ (' Edit Timesheet
A Oy

T =epdennss

- -

. “=meludes== Save Timesheet
. = - -
<=intudes= N
Y

View Timesheet

Fetch absence
reasons list

Figure 14. Time booking use cases diagram

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 13 — Use cases summary for time booking

No. | Use Case Description

5.1 | View/Add Timesheet | Staff members can view their timesheet for a
specific period and also update/save their
timesheet or add a new entry. Administrator can
view or edit timesheet entries for all staff members

5.2 | View timesheet Staff members views a summary of their timesheet

summary

entries

57

5.3.7 Holiday Management Requirements

Requirements Summary

R6 Staff members should be able to request holidays through the system. The
system should be able to display the holidays entitlement, holidays available,
request and taken for previous, current and next year. The system should also
enforce the holiday settings such as leave carryover, etc.... The holiday
approver should be able to approve or reject requested holiday. The staff
member should also be able to cancel their requested holidays if not
approved, if approved then only the approver can cancel the request.
Approvers should be able to view holiday details for their staff members. Staff
member should be able to see a holiday calendar showing the taken and
approved and requested holidays for other staff members.

Requirement List

Table 14 — Requirements summary for holiday management

No. | Requirement Use Case(s)
6.1 | Staff to view their requested/approved holidays 6.1
6.2 | Staff to be able to cancel their requested if not approved 6.1
6.3 | Staff to be able to request new holiday 6.1

6.4 | The system should enforce the holiday settings entered as
part of the system settings management use cases

6.5 | Holiday approver should be notified through tasks/email
when a new holiday request is submitted

6.6 | Holiday approver should be able to approve/reject 6.1
submitted holidays

6.7 | Staff should be notified through tasks/email when their
submitted holiday status change

6.8 | Approvers should be able to view holiday details for staff 6.1
members they are approving for and change their holiday
status

6.9 | Staff should be able to import holiday entries from the
timesheet when these don't exist in the holiday subsystem

6.10 | A holiday request should be for at least half a day and
weekends are automatically ignored.

6.11 | Staff member should be able to see a holiday calendar 6.2
showing the taken and approved and requested holidays
for other staff members.

58

Use Cases

Approver

Fetch leave
summary for all staff

Holiday Managment

View by week no

= #=ineludes> ==evpnts”

i

View holiday
calendar Creedend==
View by staff name
View My Holiday - <=pxteng==
detals 0 fNTTTTTT oo Request Holiday
(" S

) Zepdtpnds»
Cancel requested
holiday
View staff Holiday
details
T S
'

<<gxtend=>
Reject holiday

'
Approve holiday

"semtend ==

Figure 15. Holiday management use cases

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

Table 15 — Use cases summary for holiday management

No.

Use Case

Description

6.1

View Holiday details

Staff member can view their holiday summary and
request new holiday or cancel a requested holiday.
The system should also enforce the holiday roles
and import holidays entered in the time booking
system. Holiday approvers should be able to view
the holiday for their staff and approve or reject their
holidays.

6.2

View Holiday
Calendar

Staff member can view a calendar with the holiday
of all any of the staff members. The staff member
can also configure the number of weeks to view

59

5.3.8 Task Management Requirements

Requirements Summary

R7 Staff members should be able to the tasks assigned to them by the system.
The staff members should be to delete the task or set the task as complete.
The system need not validate that a staff member has actually completed
their task

Requirement List

Table 16 — Requirements summary for task management

No. | Requirement Use Case(s)
7.1 | Staff members should be able to view their assigned tasks 7.1
7.2 | Staff members should be able to set their tasks to 71
completed
7.3 | Staff members should be able to delete their assigned 7.2
tasks
Use Cases

Tasks Management

/“/ . E)dEﬂd
ex‘tend
Staff
Delete Tasks

Figure 16. Task management use cases

Use Cases Summary

The detailed use case descriptions are provided in Appendix C.

60

Table 17 — Use cases summary for task management

No. | Use Case Description

7.1 | View Tasks Staff members should be able to view their tasks and
set them as completed if desired

7.2 | Delete tasks After viewing the tasks the staff members should be to
delete these tasks

5.4 Requirement Analysis

Following the use case modelling, the analysis class diagrams were identified
using the use case realisation process. Bennett et al [4] defines the use case
realisation process as:

“..., use case realisation involves the identification of a possible set of classes,
together with an understanding of how those classes might interact to deliver the
functionality of the use case”

The collaboration between classes is usually modelled using UML 2.0
Communication diagrams, which are constructed starting from the actor by using
a boundary class, then a control class to coordinate the logic in the use case and
finally entity classes and the links between them. The author of this dissertation
has drawn the conclusion that using use case realisation involves steps similar to
the CRC method in trying to identify candidate objects, messages and links. In
addition to this, use case realisation offers the ability to easily construct a class
diagram from the communication diagram and offers better visibility than CRC.
The following steps were used to construct the analysis class diagrams:

* For each use case construct a communication diagram.

* Use the objects in the communication diagram to construct the analysis
classes and their stereotypes.

» Use the link between objects to identify association between classes and
the multiplicity on each side.

 Use the messages to identify operations for the analysis classes and
directions for associations.

» After identifying the operation for the analysis class diagrams, the
attributes are identified from the requirements list and the communication
diagrams method signature.

Appendix D contains the communication diagrams and the derived analysis class
diagrams for each of the use cases developed above.

61

6 Implementation Strategy

6.1 System Architecture

The project design followed a layered architecture (Figure 17) to ensure
encapsulation, maintainability, reuse and separation of concerns. The design
covered the user interface layer, business logic layer and the database layer, with
special emphasis on the user interface design. For such an application with
database requirements to persist the data, the minimum that can be used is two
tiers architecture; however this means that the business logic and the
presentation logic will be included in one layer. In the case of the OfficeMA the
two tiers makes code maintainability and future expansion difficult due to the
scope and complexity of the application.

For this reason the three tier architecture was used to aides the separation of
concerns in such a way that the business logic is kept separate from the display
and Web pages. This enables future expansion of the application to use a
different display technology if required.

— —HTTP Response- —
\ . Client Layer
— -HTTP Request- — — - %

2
3
14
o
E Remote Server/s
|

[isonbey d11H-

Graphical User Interface (HTML, JavaScript & CSS)

Data Formatters (HTML, XML, TeXt, etC) Presentation Layer
Presentation Layer Logic

Business Logic Code & Domain Model Objects Business Logic
Object to Relational Mapping (ORM) Layer
ODBC, JDBC Data Access Layer

Figure 17. Layered architecture for a typical Web application.

62

The various implementation strategies and methodologies for the application
layers have been identified below following a bottom up approach, starting from
the database layer and moving up to the user interface layer. The aim is to
develop a robust application that can be ported to different technologies without
considerable changes to the business layer.

6.2 Database layer

6.2.1 Choosing a DMBS

The project used a relational database for its persistence requirements. As the
project is driven towards cost reduction the first choice was to use an Open
source DMBS. The two options that was available for the project was either using
MySQL or PostgreSQL (Appendix |). It was decided based on the comparison
shown in Table 18 to use the PostgreSQL database server as it strongly
conforms to the ANSI - SQL 92/99 standards. This will support the transactional
nature of the OfficeMA data requirements and ensures data integrity through the
ability to use Check constraints, domains and Triggers. MySQL on the other hand
is less compliant with ANSI standards for example Check constraints are not yet
supported as indicated in Table 18 below. MySQL is more suited as a backend
for Web sites where fact access and data reads are required.

Table 18 — Some of the features of PostgreSQL vs. MySQL [20]

Feature PostgreSQL 8.0 MySQL 5.0
Performance Slower Faster
Sub-selects Yes Yes
Triggers Yes Yes

Full Joins Yes No
Constraints Yes No
Cursors Yes Partial

6.2.2 Database Implementation

After choosing the target DBMS the logical database design resulting from the
detailed class diagram was revised and converted into a physical model to suit
the PostgreSQL database. This activity included writing SQL for Data Definition
Language (DDL), Data Manipulation Language (DML) and creating database
indexes. The implementation strategy is outlined below:

63

« The candidate entities for the relational model were identified from the
entity classes in the detailed class diagram.

* An Entity-Relation model was developed for the above entities.
» Arelational model was build using these candidate entities.
¢ A physical model was build using SQL.

» The database tables were created and populated with sample data using
SQL.

» Database testing was done using SQL queries directly on the database
layer.

The crow’s feet notation [23] was used for the ER modelling to represent the
cordiality of the relation and the participation conditions as explained in Table 19
below.

Table 19 — Crow’s feet notation used in the ER- modelling

Symbol Meaning

Open blob - © Zero or one participation
Closed blob - ® Exactly one participation
Open blob and crow’s foot - <% Zero or more participation
Closed blob and crow’s foot - # One or more participation

6.3 Business Logic Layer

6.3.1 POJO Architectural Pattern

The heart of the OfficeMA is the business logic layer and consists of the domain
model classes developed from the detailed class diagram. The detailed class
diagram was developed as a direct result of use case modelling, which means
that the domain model classes directly represent the business objects and
requirements. The implementation of the business logic layer focused on
transforming the detailed classes into runtime classes using the Plain Old Java
Objects (POJOs) design pattern [30]. POJOs are simply JavaBean objects that
enclose their attributes and operations. In JavaBeans, attributes are declared as
private and setter / getter methods are defined to access these attributes.

In the developed domain model, entity classes alone were not enough to satisfy

the business logic. Evans [15] has identified as part of the POJOs pattern a
number of roles in the domain model by which classes can be categorised. A

64

class’s role imply certain type of responsibilities and relationship with other

classes in the domain model, these can be summarised as follows [30]:

» Entities - Objects with a distinct identity.

» Value Objects - Objects with no distinct identity.

» Factories - Define methods for creating entities.

* Repositories - Manage collections of entities and encapsulate the

persistence framework.

» Services - Implement responsibilities that can not be assigned to a single
class and encapsulates the domain model.

Figure 18 below shows part of the detailed class model for the application. The
diagram includes a service class which is invoked from the presentation layer.
The service also includes references to the various repository classes that are
used to persist or retrieve the entity objects from the database. As seen from the
diagram, Interfaces are used so that other classes can have reference to the
interface without having to worry about the implementation. The implementation
can be changed at any time and as long as the method signatures remain the
same, there will be no impact on the other classes as a result of changing the

service or repository implementation.

==interface==

StaffManagementService

+ findd iStatembersiquernsingRoleType | Sting) - List

+ createStafMemberstafiernber : Stafffember, roleTyoe | String, workStreamsids © List, gradeCode | String, creatingRoleType | String) : Stafiember
+ ypdaieStal berstaffember : Staflember, roieType | Sking, workSlreamsids | List, gradeCode | Stiing, updalingRoleTipe | Siing) | Slafflember
+ findiStaffembenid (nteger, queningRoleType | Sting) | Staflernber

7~
l
«<intetfaces»
WorkStreamRepository
1 1 ==gerice==
+ AncWorkStrearmwork Sirearmia | Indl | WorkStrearn < Staffi Servicelmpl
+ finciAifWorkStreams() : List uses
+ update Work Straarm{workStrearm - WorkStrearn) - WorkStrearm
+ ramovelWorkSiream(work Strearmid - inf) : bodlean
T -
1 N
! T -~
1 Iocates~ . _
| -
: = ==entity== —
! WorkStream entity
: Project
| -id : Integer P
I - gescription : String clg. integer
! - name : String work done against - description : String
— 1 U5 | - name: string
WorkStreamRepositoryimpl +getProjects) ;- List - code ; String
+ setProjects{projects : List) :woid

- entityManager : EntityManager

+ setEntityManager(entitManager : EntityManager) : vaid
+ getEntityManager(: EntityManager

Figure 18. Part of detailed class model showing entities, a repository and a
service

65

6.3.2 Spring Framework and Dependency Injection

There is another unanswered questioning regards to the design shown above in
Figure 18. If the service classes reference the repository classes by interface
how would they be able to instantiate these interfaces without knowing about the
implementation concrete classes. Instantiating these repository classes using the
concrete implementation classes tightly couples the code together and makes it
hard to modify a single class as the change would likely to ripple through the
other code and results in multiple class changes.

There is also another issue, the fact that POJOs by themselves are insufficient to
run the application as Richardson [30] has stated:

‘In an enterprise application you need services such as transaction
management, security and persistence...”

To address the above issues the Spring framework [60] was used. Spring is a
lightweight dependency injection, aspect-oriented container and framework. The
term dependency injection is very important in regards to the reference by
interface issue identified above. Walls [35] describes the benefits of dependency
injection as follows:

“The key benefit of DI is loose coupling. If an object only knows about its
dependencies by their interface (not their implementation or how they were
instantiated) then the dependency can be swapped out with a different
implementation without the depending object knowing the difference”

Spring framework can be configured to automatically instantiate and inject the
dependency of each object in the domain model, this reduces coupling and
encourages programming using interfaces. For example in Figure 18 the
repository instances are create by Spring and then injected into the service at
runtime. Spring is favoured over Enterprise Java Beans (EJB) as it is lightweight
and can also run in a lightweight container such as Tomcat.

The alternatives to Spring such as EJB 2.1 is been largely criticized by the Java
community for its shortcoming and declarative programming model. EJB 3.0 on
the other hand is considered a step on the right side, but the technology is still
new and the project has decided to use aspects of the its standard such as Java
Persistence API [50] which when coined with the new features in Java 5 offers an
effective way of persisting Java applications. EJB technology requires an EJB
compliant container which requires more processing power and mostly geared
towards multi-tier enterprise applications development rather than lightweight
Web applications.

66

6.3.3 Domain model classes

The implementation strategy for domain model classes can be summarised as
follows:

* The detailed class diagram was developed by applying the domain model
roles discussed above.

* The detailed classes’ skeletons were then exported to Java code using
Jude UML CASE tool (Appendix K).

* Using the Eclipse IDE (Appendix 1) the empty skeleton methods were
populated with business logic derived from the sequence diagrams. In the
simple case of entity classes these methods were getters and setters
methods.

» For entity classes UML associations were converted into object references
where appropriate.

» Entity classes were annotated with Java Persistence API annotations [50]
according to the relational model developed for the database layer. This
tells the JPA implementation how to map and persist these classes into
database tables.

* For persistent entities a repository interface and implementation was
coded. Repository classes were also annotated with the Spring
@Transactional interface, this ensures that all the CRUD method in the
repository are transactional and follow the ACID concept.

» Finally the class of the service responsible for executing the logic in the
current package is coded; this service only have a reference to the
interfaces of the repository it needs to use to persist the domain model
entities. The reference to the objects to be injected was added to the
Spring configuration file.

» The above steps are repeated for each of the packages in the detailed
class diagram.

6.3.4 Object to relational mapping framework

The repository interfaces defined above need to be implemented somehow to
persist the application objects into the database; however, before persisting
these objects some mapping needs to be done to convert these objects into
database entities. One approach of doing this is to manually map each object
and write SQL to persist them into the database directly through the Java
Database Connectivity (JDBC) driver. But this approach has some
disadvantages as summarised below [2]:

67

« The mapping from objects to database entities is a time consuming
process.

» The implementation is database specific and will need major changes to
the repository code, mapping code and SQL if a different database
implementation to be used.

A widely used solution to the problem above is the use of Object Relational
Mapping (ORM) framework (Figure 19). Baur and King [2] describe the ORM as

follows:

“In a nutshell, object/relational mapping is the automated (and transparent)
persistence of objects in a Java application to the tables in a relational database,
using metadata that describes the mapping between the objects and the

database.”

Business Logic

Layer

Application Server

Staffh

in Model

X

Comaln EntRy Classes

ORM Layer

EntRy Classes

g

St iemper

Datbase Entities

Figure 19. Business logic layer showing domain model and ORM layer

Database Server

68

Using an ORM framework has many advantages, some of which are [2]:

* Increased productivity compared to manually mapping objects to relational
tables.

» Easy maintainability as the code in the application is purely focused on
business logic and the mapping is described using metadata.

« ORM has better performance as it can support caching, lazy loading and
many other features.

* The developer can include native SQL statements if it was proven hard to
implement the required mapping/functionality through the ORM layer.

* Using an ORM framework such as Hibernate is recommended by the
Open Web Application Security Project (OWASP) [57] to avoid common
Web application attacks such as Remote SQL Injection, as it provide
proper filtering before querying the database.

* Finally, ORMs are vendor independent and can work with a large number
of databases, which increases the portability of the application.

This project has used the Java Persistence AP| standard from Sun’s EJB3
specification [50], the JPA is considered by many as a big step in the right
direction compared with EJB2 entity beans. The standard uses metadata to
describe the object to relational mappings; this metadata can either be in XML
configuration files or embedded in the code using the new Java 5 annotation
feature. Hibernate [47], a very popular and widely used ORM framework provide
an implementation for the JPA and adds many more features making it the best
choice for the ORM layer.

When mapping objects into relational entities the author needed to consider the
concept of referencing in the object oriented world. For example in the case of
One to Many E-R mapping it might be looked as Many to One from object
oriented side. This arises from the fact that when loading entities from the
database and mapping these into objects a whole object hierarchy will need to be
loaded and constructed. So it is crucial to decide on choosing the main object
which will be loaded and if the entire objects it is referencing (entire object graph)
will also be constructed.

Considering for example the StaffMember object (Figure 45), this object has One
to One, One to Many, Many to Many and most importantly Many to One
reference with other objects. The Many to One mapping is as a result of looking
at the relation from the StaffMember point of view, but in database terms Many to
One is simply a One to Many relation as there is no concept of Navigability in
database term. Having said this, the relational model can be checked against
user transactions using the transaction pathways technique outlined by Connolly
and Begg [8]. However, in the application’s case this is not required as the

69

database model was designed from the entities in the class diagram, which
already supports the user transactions.

The author has devised an approach that can be used to map relations form the
E-R model into JPA annotations which is summarised in Table 20 below. This
approach was then followed to map the entity classes into the developed data
model using JPA annotations. All the Many to Many relationships were resolved
during the logical database design stage by introducing a third dependent
relation, and hence there was no need to use @ManyToMany JPA mapping.

It was also revealed that cascade annotation for foreign key updates on the
parent table should not be included in the child entity as this will result in the
deletion of the parent row whenever a child row is deleted. It was clear that this
constraint should be implemented in the database schema and not included in

the JPA annotation as it does not have the desired effect.

Table 20 — ER-Model and Relational Mode to JPA and Hibernate mappings

ER-Model Relational Mode JPA Annotation
Entity Relation @Entity
Identifier Primary key @ld
Alternate Key @UniqueConstraint(columnNames
= {"staff id", "holiday year"})
Relationships:
One to One Primary key + Foreign key mechanism @OneToOne
— plus declaring the Foreign key as
(O———— > | alternate key. Declaring alternate key:
@UniqueConstraint(columnNames
» * Mandatory participation condition: = {"staff_id", "holiday_year"})
Left side — can be achieved using a
constraint. Declaring a check constraint:
O—@ Right side — not allowing null for @org.hibernate.annotations.Check(
Foreign key. constraints = "(mileage
is not null) or (amount is not null)"
&—O
)
Declaring not null:
@Column(nullable = false)
One to Many Primary key + Foreign key mechanism. | @OneToMany annotation created
in the owning class
O——Cr | Mandatory Participation condition:
Left side — can be achieved using a Declaring a check constraint:
constraint. @org.hibernate.annotations.Check(
& constraints = "(mileage
Right side — not allowing null for is not null) or (amount is not null)"
Foreign key.)
O—&
Declaring not null:
&—Cr @Column(nullable = false)
Cascading:

70

Cascading works well when
annotating the owning relationship
@OneToMany(cascade =
{CascadeType.ALL})

Many to One

O——=O

»>——0

Primary key + Foreign key mechanism.

Mandatory Participation condition:
Left side — not allowing null for Foreign

key.

Right side — can be achieved using a
constraint.

@ManyToOne annotation created
in the owned class

Declaring a check constraint:
@org.hibernate.annotations.Check(

constraints = "(mileage
is not null) or (amount is not null)"

)

Declaring not null:
@Column(nullable = false)

Cascading:
Cascading annotation should not

be used in the child class, as will
result in the primary key table being
updated. Should be included in the
database schema

Many to Many

O———&

»——&

Should be resolved at the Logical
database design, by resolving the M-N
relationships into 3 relations

Mandatory Participation condition:
Implemented as above for One to Many

relationships on the One side of the two
owning relations

@ManyToMany

The expected name for the
intermediate table is table1_table2
unless specified otherwise in the
annotation.

71

6.3.5 Coding practices
Code Repository

As the project code was relatively large, with many classes, packages and HTML
files, it was decided to use a code repository to store the code. This was
important to avoid accidental loss to the code resulting from hardware or software
failure, and although only one developer was working on the project, having the
code in a central repository made it easy to work on different computers.

Google code was used to host the project development (Appendix L), as it offers
a project home page with downloads section, a Wiki, issues area for raising bugs
and source area for checking in and out the code. Google code uses a widely
known version control system called the Subversion repository. Using Google
code has many advantages some of which can be summarised as follows:

» Central repository for the project code with revision history.
* Issues section where bugs can be logged and tracked.

* Web access makes it easy for other people to view or use the code.

« A Wiki page where project related help and documentations can be
published.

6.3.6 Unit testing the domain model classes

After developing the Service classes for each of the packages in the OfficeMA,
unit tests were written for each of the services. These unit tests focused on
testing the Service, Repository and Entity classes in the domain model and
ensuring that the correct logic was performed as outlined in the use cases. JUnit,
a widely used Java unit testing framework was used to carryout these tests
(Appendix). JUnit framework is also integrated with the Eclipse IDE and can be
run from within the Integrated Development Environment (IDE) (Figure 20).

72

File Edit Source Refactor Navigate Search Project Run Window Help

- %-0-Q- 8 G & @& 8+4/@
[project Explorer |gu Junit 23

o Finished after 13.138 seconds oG gf Rl QR
Runs: 27/27 B Erors: 2 B Falures: 3

=[] com.officema.domain.staff.StaffManagementServiceTest [Runner: JUnit 3] [
—fE] testGetStaffMemberRepository 1 private static StaffManagementServiceImpl staf
g testGetRoleRepository

EE testGetWorkStreamRepository

BE testFindWorkStreamsBylds

e testGetGradeRepository

BE testQueryGrade

B testRemoveStaffvember

i testServiceCreateStafMember
g testCreateDuplcateStaff
g testCreateDuplcateUserName
g testNotAllowedCreateStaff
g testDirectlUpdateStaffMember

EE testipdateStaffMemberSuccess

e = »
viewstaff.js f@ Wrapper.j (m 52 Py =8

emezio =

extends TestCase {

static {
ApplicationContext ctx = new ClassPacn¥mlApplicationContext ("resources/officema.xml

staffService = (StaffManagementServiceImpl) ctx.getBean("staffManagementService");

/% (non-Javadog)

* @see junit.framework.TestCasefsetUp()

*f

protected void setUp() throws Exception {
super.setlp () ;

EE testipdateStafMemberFailure 3

EE testUpdateMyDetailsSuccess

o TR ¥ e
Faiure Trace |2 * Test method for {@link com.officems.services.staff.StaffManagementServicelImpligetSta

0 org. springframework. transaction, TransactionSystemException: Could not commit]# &l 2L i |
Caused by: javax. persistence. RollbackException: Error while commiting the trans
at org.hibernate. jb. Transactionmpl. commit(Transactionimpl java: 71) =|[[El problems fé‘, Tasks ﬁi’& Servers fo JSON Tree Analyzer (C(ﬂ QuickREx fE Console 53 | Reg. Exp. Luhrarﬂ @ ngrasq =8
atorg vark. arm. o sact daCommit; s2ct | | <terminated> StafMana : =T
Ll gementServiceTest (1) [JUnit] C:\Program Files\Javaljre1.5.0_11|pin\iavaw.exe (12 - 4 .

storg vork.ransaction.support, AbstractPlatfor fenag: ||, A - — X% EEEEE 8-

at org.springframework.transaction.support. AbstractPlatformTransactionManag: || [DEBUG]
at org.springframework. transaction interceptor. TransactionAspectSupport.comn | [pEaTG]
at org.springframework. transaction interceptor, TransactionInterceptor invoke(1 | 1pE=TG]

~
org.springframework.transaction.support.TransactionSynchronizationManager - RenmvU
org.springframework.transaction.support.TransactionSynchronizationManager - Remov
org.springframework.orm.jpa.Jpalransactiontanager - Closing JPA EntityManager [or

at org.springframework. aop. framework. ReflectiveMethodinvocation. proceed(Re [WARN] org.hibernate.engine.loading.loadContexts - fail-safe cleanup (collections) : org
at org.spring £ vork. JdkDyramicAopPr ke(dkDynami || [waRN] org.hibernate.engine.loading.LoadContexts - fail-safe cleanup ([collections) : org
at SProxy48.remove (Unknown Source) [DEBUG] org.springmodules.cache .provider.AbstractCacheProviderFacade — Attempt to store ©
atorg.springframewark.aop. suppart. Acpuitis. invokeJonpointUsingRefiection(Ac || [DEBUG] 20:19:55 org.springmodules.cache.provider.hbstractCacheProviderFacade - Object was success

= at org‘spnngﬁamewcrk‘acp‘framewcrk‘Raﬂecuvememcd]nvocauan.\r\vokeer\[M
&) @ |l

0 | wirible | smartInsert | 59:40

Figure 20. JUnit tests executed from within the Eclipse IDE.

73

6.4 Presentation Layer

As explained in section (2), the user interface used for OfficeMA is a Rich Internet
Application that runs on the client side and communicates with the server using
AJAX. This approach to designing web applications requires proper design and
implementation compared to designing a standard HTML user interface. A
development methodology was developed for the user interface in this project
based on Crane’s four defining principles of AJAX [10] as summarised below:

1.

The browser hosts an application, not content. Hence the user
interface is developed to run entirely on the client's browser and
communications with the server need to be done using AJAX. As no HTML
is sent to the browser after the main application is loaded the user
interface has to be self sufficient and able to deal with all scenarios on the
client side and only contact the server for data. For this to be achieved the
client application followed the Model-Viewer-Controller design pattern.

The server delivers data, not content. This means that the server only
sends the contents to the application once and any transfer thereafter will
be of pure data. That server should be able to covey data and status
messages to the client, and the transfer of data should be done in a
lightweight protocol that can easily be constructed as objects on the client
side.

User interaction with the application can be fluid and continuous.
The user interface should be rich and use visual widgets that enhance the
user productivity and experience. This can be achieved by using widgets
such as buttons, menus, tabs and dialogues where appropriate (Table 1)

This is real coding and requires discipline. This is a crucial point for an
application that will be running entirely from the browser on the client side
and hence the project has seriously considered many issues such as
security, error handling, session management and other functionality.

74

G
.-=_.. Lot —Application 3arer

Ranes Jam
= XMLHTTE Rogues

S e

Figure 21. Office Management Application Presentation layer

6.4.1 Presentation Layer logic and data formatters

The presentation layer logic shown as a controller and a model in the Figure 21
above was required to mediate between the business layer and the user
interface. This layer also carries out data formatting to suit the presentation
technology being used. For this project Struts 2 [63], a widely used and popular
web Model-View-Controller framework was used. Struts is build on the top of the
Java Servlet and JavaServer Pages technology, it offers many features and
enhancement to mainstream web development.

Struts 2 framework

Struts 2 was used for the following reasons:

o Struts 2 supports validation of user input, this validation can be client or
server side and is recommended by the Open Web Application Security
Project (OWASP) [57] to avoid common Web application attack to do with
input validation and type conversion.

» Struts 2 automatically type converts and populate all the string values of
the request parameters into the instance variables of the Java class
handling the HTTP request.

75

» Struts 2 enables the developer to use a single class to act as a controller
and handle various types of web requests by using a method for each
business operation.

» Struts 2 offers the ability to work straight from the business model without
the need to create intermediary objects.

» Struts 2 integrates with the Spring framework well.

o Struts 2 defines a concept of interceptors which is similar to the J2EE
Filters. Interceptors offer the chance to create custom data formatter to
format the data returned on the HTTP response into XML, JSON, etc...

The implementation strategy for this presentation logic layer was to write a class,
termed an Action class to handle a number of operations. Validation information
for the input for this class was also defined in XML configuration files. The output
result of the Action class execution was formatted into the JavaScript Object
Notation (JSON) [52] format using the Struts 2 JSON plug-in [62].

JavaScript Object Notation (JSON)

JSON is a string representation of JavaScript objects; it's lightweight and shorter
than XML or HTML. JSON strings can be converted into JavaScript object using
the eval JavaScript function as shown in Figure 22 below.

eval (‘[‘staffMember” :{
"dateJoined":"01\/201/2008",

"emailAddress":"omer.dawelbeit@gmail.com”

staffMember

Id

dateloined
emailAddress
employmentType
fulllame

grade

workTello

"employmentType":"Permanent” ,

"fullName":"Omer Dawelbeit",
"grade":"Senior Consultant",
"ld":87,

"workTelNo":""

H);

Figure 22. Using JavaScript eval function on a JSON string to create a
JavaScript Object

76

This mechanism was used to transport data from the presentation logic layer to
the controller on client side user interface (Figure 21). The following methodology
was devised and use when developing the presentation logic layer components
to retrieve or process data for the user interface:

» For the functionality required by the user interface, for example query staff
details, define an Action class with a method name “query”

» Write validation criteria for the Action class input parameter from the user
interface.

» Check the domain model entity can be used directly or a Wrapper object is
required, for example to restrict or change the type of some of the fields

» Define the Action class results as JSON type so that Struts 2 can
automatically serialize the Java objects into JSON string.

* Return a result status object to indicate the status of execution of the
Action class. As shown below the result status object contains a message
and a status, the status is either S for success or E for error. This is used
by the client side user interface to determine the appropriate action.

['resultStatus":{"message":"Staff members details queried successfully","status":"S"}]

6.4.2 Graphical user interface

The user interface for the application is transferred to the client only once when
the user authenticates successfully to the application. The Ul then resides on the
client’s browser and handles itself according to the actions of the user as shown
in Figure 21. This means that the user interface will need to be properly tested on
the list of supported browsers and any issues resolved before hand.

The user interface follows the Model-View-Controller pattern and was
implemented using Dojo, a rich DHTML, AJAX enabled toolkit [42]. The Dojo
toolkit streamlines JavaScript development by providing custom rich widgets
(Table 1), many utility functions and an AJAX library. Since JavaScript can be
used as an object oriented language based on prototyping, the Dojo toolkit
provide a Java like style to defining objects and inheritance in JavaScript. This
approach was used for all the JavaScript objects that comprises the user
interface.

Widget objects defined in Dojo can also have a HTML template and linked to
Document Object Model (DOM) nodes. The widget object then manipulates the

77

HTML nodes to display information or responds to user’s actions such as button
clicks, etc....

A new approach to web user interface development

The approach followed to develop the rich HTML user interface is not widely
used for Web applications although the process used is deeply rooted in the
USDP and was used for a long time to model user interface for desktop
applications developed in languages such as Java and Visual Basic. Having said
this, the fact that JavaScript supports object orientation, it is theoretically possible
to use the same methodology outlined by Bennett et al [4] to design the user
interface for Rich Internet Applications.

Bennett et al [4] summarised the steps used in designing the boundary classes
as follow:

* Prototyping the user interface.

» Designing the classes.

» Modelling the interaction involved in the interface using interaction or
communication diagrams.

* Modelling the control of the interface using state machines.

The client side View

The view component on the client side user interface (Figure 21) consists of
DOM nodes and JavaScript Widgets. The HTML in the view is automatically
constructed in the browser as DOM nodes. The JavaScript widgets use
JavaScript to control a number of DOM nodes that make up the widget.
JavaScript widgets were used for complex user interface components such as
widgets that control other widgets to perform a specific operation.

78

84 =[]

— Staff Details

WorkTelNo
Grade Consultant
~ EmailAddress thomas.hancock@hotmail.com
PersonalPhoto
Gender Male
Dateloinad 20/01/2008
EmploymentType Contractor
HomeTelNo 01189511999
Dateleft
FirstName Thomas
Title Sir

T-Mobile New Generation Platform,IBEM

WorkStreams Virtual Grid

Figure 23. View Staff Details dialogue widget.
For example dialogue boxes widgets contain and control a number of other
widgets as shown below for the “Staff Details” widget (Figure 23). Each
JavaScript widget consists of the following:

1. JavaScript object, the author used the term View Support Object (VSO) to
describe these JavaScript Objects as they control the DOM nodes
attached to them (Figure 21).

2. DOM nodes to represent the HTML template for the widget.
3. Other child widgets as widgets can be nested.

The high level container widgets in the user interface such as floating windows
and dialogue boxes were implemented using the following approach:

» Define the widget template which consists of HTML, CSS and other
widgets, this is defined in a HTML file e.g. viewStaff.html. This will later
on be constructed as DOM nodes in the browser.

» Define the View Support Object (VSO) for the widget in a JavaScript file,
e.g. viewStaff.js using a JavaScript class definition from the Dojo toolkit
[43] as shown in Figure 24 below.

To define a widget class (supports Mixins, multiple inheritance):

dojo.widget.defineWidget("ClassName", [SuperClass1, SuperClass2, ...], {
property1: “,
property2:
method1: function() {
// method code here
}

}

To define a non-widget class (supports Mixins, multiple inheritance):

79

dojo.declare("ClassName",[SuperClass1, SuperClass2, ...], {
property1: *,
property2: *,
// acts as a Java constructor
initializer : function(urls) {
this.urls = urls;
this.user ="";
this.ajaxTimeOut = 600; // 600s, 10mins to wait for ajax
// calls

}7
method1: function() {

// method code here
}

Figure 24. JavaScript classes declarations in Dojo
Implement the methods required for the VSO to control the DOM nodes.
These methods follow from the user interface models such as boundary
classes and interaction diagrams as shown in Figure 25 and 26 below. For
the StaffView widget a boundary class diagram and an interaction
diagram were developed to model the functionality of the ViewStaff
JavaScript widget.

==widget==
HtmMWidget

==houndary==
ViewStaff

+templatePath : String
+templateCssPath - String
+widgetsinTemplate - haalean = true
+ checkBoxPrefix : String = "view_"

+ staffPhoto : String

+ staffDetailsTahle : DOMMNode

+ parent : CustomFloatingPane

+ tloseButton : Button

+ populateDetails(staffember : Object, currentlUser : Object) :vaid

+ _createTahleRowifieldiarme : String, fieldvalue : String, index ; int) - vaid
+ _deleteTableRows : vaid

+ onShow() void

+ cancel :void

Figure 25. Boundary class diagram for ViewStaff widget

80

% |-o O |-o Staffembetaction
: Staff - FindStaff Contraller + WiewStaff
R T T

T

| 1: showSelected() | | |

|
| | l
1.1 gueryStafit | |
| 111 quenStaf |
} <screater>
| } |‘ 1.1.1.2: setStaflember) 11.1.1: CreateMessage(StafiMembernrapper

2: populateDetails(stafermber.Object, curenilUser.Chject) : void I

3 cancel() -woid |

Figure 26. Sequence diagram for the ViewStaff widget

- —————————

The client side Model (Data)

On the server side the domain model contains the business objects these are
then transferred as data to the client side in JSON format. These objects will then
be built into client side JavaScript objects as shown above using the ‘eval’
function. This way the model on the client side will reflect the objects on the
server side and there is no need to create class definition for the model on the
client side as this is done dynamically during the running of the application.

An example to demonstrate this is the sequence diagram shown Figure 24
above, the server side object StaffMemberWrapper is serialized into JSON
format and delivered to the client side; consequently the same object graph will
also exist on the client side. The main advantage of this approach is the fact that
there is no need to maintain two set of class definitions for StattMember on the
client and server side, as the server side definition can be used in both layers.

The client side Controller

The controller (Figure 21) orchestrates the view, the model and facilitates
communications with the server to retrieve and save data using AJAX. The
controller does the following:

» Holds reference to and controls all the JavaScript widgets.

* Queries data from the server using AJAX and reconstructs the response
into JavaScript model objects.

» Saves data to the server from the updated model.

81

» Enforces security and authorisation on the client side. The same
enforcements are done on the server side to ensure no JavaScript

tampering was done.

6.5 Overall System

Application Server

Web Container

O Presentation Tier
\ IE(HTTP Struts 2
P Browser | Servlets | | JSP |
7
Business Tier
POJOs
Spring
Hibernate
JDBC
P JDBC Connection
Dm Paoal

Figure 27. OfficeMA candidate technologies. Adapted from Richardson [30].

82

Figure 27 above provides an overview of the initial candidate technologies for the
Office Management Application and the tier on which they are used. The specific
versions used in for the project are summarised in Appendix |. As explained
before one of the objectives of the project is to use lightweight Open Source
frameworks to add transaction, security and persistence to the application
domain model developed using the USDP.

7 Detailed Software Design

The detailed software design followed from the analysis classes by elaborating
on the class associations and their multiplicity. Detailed design was also
concerned with the specification of the attribute types, how operations function
and how objects interact with each other. Other aspects such as object visibility,
the use of Interfaces and the use of Design Patterns were also applied. Other
areas that were considered during the detailed design are:

e User interface

» Data management

The detailed design was carried out taking into consideration the following
candidate technologies chosen for the implementation:

« Java 5 is used to implement the application logic. Other widely used Java
frameworks were used such as Hibernate, Struts and Spring. Unit testing
was implemented using the JUnit framework.

« DHTML, JavaScript, CSS and the Dojo toolkit is used to implement the
user interface.

» PostgreSQL is used to implement the database layer.

83

7.1 Detailed Class Design and Implementation

The source code developed as part of the detailed design and implementation is
included the CD-ROM attached with this dissertation as summarised in Appendix
H. The Java packages structure for the source code is shown in Figure 28 below.

=758 src
= 3 com.officema
+-H3 exceptions
= -Hg model
#- Hf company
+-H3 expenses
+ - H holidays
- H staff
+-H3 tasks
+ [} persistence.dao
= '—H presentation
+- 43 actions
E3 0 interceptors
= '—H services
+- 3 expenses
+ 5 holidays
-3 staff
+ - tasks
- 5 workflow

Figure 28. Package structure for OfficeMA detailed classes

7.1.1 Design and architectural patterns

Detailed class design was based on the POJO architectural pattern as explained
in subsection (6.3) and the use of the Data Access Object (DAO) design pattern
[30]. The advantage of using the DAO pattern was to isolate the business logic
from the details of the persistence layer implementation.

The class diagram below shows the DAO pattern and how the various classes
interact to provide the necessary persistence isolation. In regards to this project
the following terms were used to refer to the classes in the DAO pattern:

Service — Represent the business object that carries out some business
logic. The Service also represents a Control class in the USDP, so for
each package a Service class was used to support the use cases in that
package. (5.3).

Repository — Represent the DataAccessObject used to isolate the
Service from the implementation details of the persistence layer.

EntityManger — is the persistence manager for the Java Persistence API
specification (javax.persistence.EntityManager) [51]. This is declared and
annotated using the @PersistenceContext (javax.persistence.
PersistenceContext), but not instantiated in the DAO as it is injected by the
Spring framework as a result of the declared annotation. The
EntityManager class provide methods to perform CRUD operations on
entities and can also be used to execute SQL queries, which can be in
native SQL or JPA query language [50].

84

» Model — Represent the TransferObject or the entity being retrieved or
persisted. As discussed in subsection (6.3.4) the entity classes are
annotated with JPA mappings to map them to the physical database

schema.
BusinessObject DataAccessObject
uses] encapsulates Datasource
Bervice Repository
e ~ ! Entitvldanager
“~ .. Ohtainsimodifies |
. |creatESIUSES
—
. - |
- Y

TransferObject

Tlodel

Figure 29. Data Access Object Class Diagram [30].

Below the detailed design for each of the packages in the Office Management
Application is considered. A service class was used in each package to support
the use case. Repositories were implemented for each class that required
persistence and is the main focus of the use case logic. Classes that are
persisted as part of these main classes will not have their own repositories as
they automatically persisted as part of the object graph for main entities.

7.1.2 Enumerated types

One of the new features in Java 5 the enumerated type [35] was used in the
OfficeMA implementation. Most of the classes that are of type Enum ended with
the word Type, such as ExpensesStatusType, HolidayStatusTypes, etc....
Enumerated types are shown in the detailed class diagram as having “enum”
stereotype. Enumerations in Java have many advantages such as having a
name and an ordinal similar to the C++ counterpart, however the Java
enumeration are far powerful and can have static methods and can also be used
in switch statements as shown for Enum OperationType implemented as part of
the staff management module:

public boolean isOperationPermitted (OperationType operation) {
boolean permitted = false;
switch (operation) {
case VIEW PARTIAL STAFF DETAILS:
case UPDATE OWN DETAILS:

85

case UPDATE PARTIAL STAFF DETAILS:
case VIEW OWN DETAILS:
case VIEW OTHERS DETAILS:
permitted = true;
break;
}

return permitted;

7.1.3 Dependency Injection using Spring

As discussed in subsection (6.3.2) the Spring framework was used as a container
for the OfficeMA classes, one of the features discussed was the DI used to
provide objects with their dependencies at runtime. This feature is in fact just a
drop in the ocean compared to the overall features and capabilities offered by the
Spring framework. Without using DI, a great deal of boilerplate code would be
needed to instantiate objects at runtime. The code would have also been tightly
coupled because classes need a concrete class to instantiate which renders the
use of interfaces pointless in this case.

The Spring configurations, termed bean configurations are declared in the file
“/OfficeMA/WebContent/WEB-INF/applicationContext.xml”. This file includes the
declaration of all the beans (classes) that Spring is going to create at runtime and
also their wiring configurations. Most importantly the data source configurations
such as the database server type, hostname, username, password and
connection pooling are all configured in this file. Figures 30 below shows the
beans configurations for OfficeMA classes.

@ halidaysManagementService| @ expensesManagementService
® icarsReposiory Gy eym—
(F) taskManagementService (F) expensesCategoryRepository
w
@ entityManagerFactory| @ taskManagementService] |& holidaysRapository| @ staffManagementService] |\§ axpensescabegoryRapositorﬂ ‘\3 expensesRepository|
(@ dataSource (B) taskRepository (@ staffMemberRepository
(® jpavendoradapter () workStreamRepository
(B gradeRepository
(® roleRepository
@ dataSource ‘\3 taskRepos\borﬂ ‘\3 wor)GtreamRapositorﬂ ‘& ruleRapository| ‘& gradeRaposimry‘ |® staffMemberRepository|
(@ driverClassName
@ url

® username
(E) password
® initialSize

(B) maxActive

[@ org.springframework.orm.jpa.support. Persistence AnnotationBeanPostProcessor #0fficeMA 1 #srcfresources fofficema. xml=21]

‘\3 org.spnngframawork.dao.annotaﬁon‘Pers\sbenceExcephonTrans\ahonPoslProcessor=0fﬁceMA1=srcfresourcesfofﬁcema‘xm\=64|

Figure 30. Spring beans schematic for OfficeMA classes

86

7.1.4 The use of Exceptions

Exceptional conditions in the OfficeMA code were handled using Java
Exceptions. Exceptions were thrown in the code to disrupt the normal program
flow and to indicate to the caller that an error or some unexpected condition or
state has occurred. The business logic layer was programmed so that calling
method incorrectly will result in an unchecked runtime exception to be thrown
such java.lang.lllegalArgumentException, this happens when the developer of
the calling code invoke the business layer methods with invalid parameters.
Other validation exceptions such as exceptional condition that might happen at
runtime as a result of invalid data or state are thrown as checked exceptions so
that the caller can handle these and take the appropriate action accordingly.

Implementation details

The application Exception classes were implemented using the following classes
including fully qualified package names:

« com.officema.exceptions.AccountLockedException.java

« com.officema.exceptions.DetailsRetrieveUpdateException.java
« com.officema.exceptions.InvalidPasswordException.java

» com.officema.exceptions.InvalidUsernameException.java

» com.officema.exceptions.PermissionException.java

» com.officema.exceptions.ValidationException.java

7.1.5 Generics and Parameterized Classes

A generic repository (DAO) super class and interface were used to provide
generic functionally for CRUD (Create, Read, Update and Delete) operations for
the domain model entities (Figure 31). The super class uses the new Java 5
Generic feature [45], which is similar to the C++ templates, and offers better
readability and compile-time type checking for Collection classes.

For example in the case below Generics made it possible to create a super class
and an interface that can used to retrieve an unknown entity type. This was not
possible to achieve without Generics as the user has to either type cast entities
or get all entities to implement the same Interface or super class or write multiple
super classes, one for each repository. “Generics are implemented by type
erasure: generic type information is present only at compile time, after which it is
erased by the compiler” [6].

As seen below the Generic Java concept is modelled as class parameters in
UML. The OMG UML specification [69] states:

87

"A template is a parameterized element that can be used to generate other
model elements using TemplateBinding relationships. The template parameters
for the template signature specify the formal parameters that will be substituted
by actual parameters (or the default) in a binding. "

1,10,
=zinterface==
GenericRepository
GenericRepository<T,ID> i _—
postory< ———————————;T—“;*_J—'I%d—:l’—D; —————————— S+ g i T
TR + finctA i) Lisk=T=

‘f,'}. + Updatefentity 71T
! + remmovelic L FO0 vl

' [T
GenericRepositoryimpl

+ GenericRepositorydmpld

+getPersistentClass : Class=T=

+ getEntityhanagerd | Entityanager

+ setEntityManagerientityManager ; Entityanager) ;void
+findAlld : List=T=

+find(id 1Dy : T

+ removedid ;1D woid

+ flushi waid

+ cleard S waid

Figure 31. Generic repository super class and interface for CRUD operation

Implementation details

The generic repository classes were implemented using the following classes
including fully qualified package names:

» com.officema.persistence.dao.GenericRepository.java
» com.officema.persistence.dao.GenericRepositorylmpl.java

7.2 Application Packages

The detailed class design and the implementation for the following application
packages are outlines below. These packages include:

« Company package

» Expenses package

* Holidays package

« Staff package

» System Settings package

» Task package

88

7.2.1 Company package:

The Company package contains classes such as WorkStream, Project and
Grade. These classes were put on a separate package as they belong to the
whole company and might be used in other packages. The class diagram below
(Figures 32, 33) outlines the detailed classes for the Company package and
contains two repositories as follows:

» WorkStreamRepositorylmpl — responsible for saving and retrieving
WorkStream and Project from the database.

» GradeRepositorylmpl — responsible for saving and retrieving Grade from
the database

Project class does not have its own repository as it is retrieved from the database
as part of the WorkStream. This is shown in the class diagram using the
composition association to indicate that Projects are part of WorkStreams and
can not exist in isolation.

Implementation Details

The Company package classes were implemented using the following classes
including fully qualified package names:

» com.officema.model.company.Project.java

» com.officema.model.company.WorkStream.java

« com.officema.persistence.dao.jpa.GradeRepositorylmpl.java

« com.officema.persistence.dao.jpa.WorkStreamRepositorylmpl.java
» com.officema.persistence.dao.GradeRepository.java

« com.officema.persistence.dao.WorkStreamRepository.java

89

GenericRepository<T,ID>

=

GenericRepositoryimpl

==hind== }

+ GenericRepositoryimpld
+ getPersistentClass) : Clags<T=
+ getEntityManager() | EntityManager

+ setEntityManager(entivanager : Enfitybanager) : void

+ findAlD : List=T=
+findic DY T

+ removedid ;[0 void
+flushi) : void

+ cleard : vaid

WorkStreamRepositoryimpl

<<ifterfacess
GenericRepository

+ finciic - 10) 0T
+ finctAli) © List=T=

+ updatefentihy 1 71T
+ rermove(id | [10) - void

==intarfaces=
WorkStreamRepository

+ fincd iWarkSheamsiworkStrearnids | Intege) © List

- i

- enfityanager : EntityManager

+ setEntityManager{entivManager | EntityManager) : void

+ getEntityManager)) EntityManager

- ’
Phs ’
- ’
. ‘
logates
K
%
==enity== "
WorkStream ‘;fgj‘;“;>
- id : Integer .
i . -id : Integer
- description : Strin L
; FSt & work done against? - desctiption : String
name - string | - narme : String
+ getProjects(: List - code : String
+ setProjects(projects : List) | void

Figure 32. WorkStream, Project and repository classes

GenericRepository<T, |0

iy

GerericRepositor ol

+ Generc Repository Impld
+ get Persistent Class() : Class<T*
+ get Entityhianagen]) : Entityhinager

+ find A0 : List<T>

+ findid 100 : T

+ remonea(id o 100 waid
+ flushil) : woid

+ clear) : waoid

+ =et EntityhBnagenentityhBnager : EntityhBnager) : woid

Grade Repositorylmpl

- entitvivanager ; Entityhianager

+ get Entitvhdanagen) : Ertityhinager

+ =et FntityhBnagenentityhBnager : Entityhnager) : vold

_ . fdhinder
TT |00

dinterfacers
GenericRepasitory

TTTTT A e 0T
+ifd AN - LT
+update ferdity 0 T) 0T
+ e ve o C 00 v

[
|

<dinterfaces:
Grade Repository

+ 7 By Cads fprads Cods © Sting) ; Grade

A i

" I.
. Ioc?ﬂes

'

vy
<entity > >

Grade

- code : String

- name : String

- minimum $alary : BigDecimal
- mazimumSalary : BigDecimal
-id : Integer

+ getCode) : String

+ setCodelcode @ String) : woid

+getHame() : String

+ =setMameiname : String) : woid

+ gethdnimumSalary) : BigDecimal

+ =sethinimum Salary(minimum Salary : BigDecimal) : woid
+ gethilazimumSalary () BigDecimal

+ zethiazimumSalary(maximumSalary : BigDecimal) : woi
+getld) : Integer

+zetldid : Integer] : waoid

Figure 33. Grade and GradeRepository classes

90

7.2.2 Expenses package:

The Expenses package contains classes such as Expenses, ExpensesCategory,
Expensesltem, ExpensesMnemonic, ExpensesStatus, ExpensesStatusType and
MileageCost. As the expenses transition between a number of states, this
transition was modelled using a state diagram which is included in Appendix D
and was explained in details in the user guide for the application included in
Appendix H. The class diagram below outline the detailed classes for the
Expenses package and contains two repositories and a service as follows:

» ExpensesCategoryRepositorylmpl — responsible for saving and retrieving
Expenses, Expensesltem and ExpensesStatus from database.

» ExpensesCategoryRepositorylmpl — responsible for saving and retrieving
ExpensesCategory from the database

Although the Expenses class depends completely on the StaffMember class as
indicated by the composition association in the class diagram below, it is
retrieved separately using the ExpensesRepository. This is achieved by including
the reference to the StaffMember in the Expenses object instead of referencing a
collection of Expenses from the StaffMember object.

The advantage of this strategy is that when loading the StaffMember obiject in
staff management functions the expenses for the staff member are not relevant
and are not loaded from the database to increase performance. Only when
expenses are loaded then the staff member instance for these expenses will be
loaded as well. To achieve this a @ManyToOne JPA annotation was used in the
Expenses class to reference the StaffMember instance.

Expenses management service

The ExpensesManagementServicelmpl class provides an implementation of all
the business logic that is required to satisfy the various expenses management
use cases through the methods shown in Figure 35. The service also provides
the interface ExpensesManagementService for clients use to hide the
implementation. The service class makes use of other repositories and services
such as the ExpensesRepository, ExpensesCategoryRepository and the
TaskManagementService to retrieve and update expenses related entities. These
private instance variables are not instantiated by the service instead these are
injected using the Spring framework at runtime using Dependency Injection
(Figure 33).

91

@ expensesManagementService

(F) expensesRepository
(F) expensesCateqoryRepository

() taskManagementService

/\

|® ExpensesRestib:nr\,rl @ taskManagementService |® expensesCategoryRepository
(F) taskRepositary

@ taskRepository|

Figure 34. Spring beans schematic for ExpensesManagementServicelmpl

CDITI.DfﬁEEma.SEI’ViCES.EXDEHSES

(-@ H_

ExpensesManagementServiceImpl

log : Log

expenseshepository : ExpensesRepository
expensesCategoryRepository : ExpensesCategoryRepository
taskManagementService : TaskManagementService
setExpensesRepaository(ExpensesRepository)
setExpensesCategoryRepository(ExpensesCategoryRepository)
@ .. findExpenses(Integer, StaffMember)

@ . findExpenses(Inteqger, Integer, StaffMember)

@ . findExpenses(Integer, Integer, Integer, StaffMember)
@ .. approveExpenses(Expenses, StaffMember)

@ - rejectExpenses(Expenses, StaffMember)

@ .. payExpenses(Expenses, StaffMember)

@ - submitExpenses(Expenses, Staffiember)

@ .~ saveExpenses(Expenses, StaffMember)

@ - findExpensesType(Integer)

@ - findAlExpensesTypes()

@ .. findExpensesCategoryByType(String)

@ . removeExpensesCategory(ExpensesCategory)

@ .. updateExpensesCategory(ExpensesCategory)

@ setTaskManagementService(TaskManagementservice)

o o% o of

Figure 35. Methods defined by the ExpensesManagementServicelmpl

Implementation Details

The Expenses package classes were implemented using the following classes
including fully qualified package names:

« com.officema.model.expenses.types.ExpensesStatusType.java
« com.officema.model.expenses.Expenses.java

com.officema.model.expenses.ExpensesCategory.java
com.officema.model.expenses.Expensesltem.java
com.officema.model.expenses.ExpensesMnemonic.java
com.officema.model.expenses.ExpensesStatus.java
com.officema.model.expenses.MileageCost.java
com.officema.persistence.dao.jpa.ExpensesCategoryRepositorylmpl.java
com.officema.persistence.dao.jpa.ExpensesRepositorylmpl.java
com.officema.persistence.dao.ExpensesCategoryRepository.java
com.officema.persistence.dao.ExpensesRepository.java
com.officema.services.expenses.ExpensesManagementService.java
com.officema.services.expenses.ExpensesManagementServicelmpl.java

93

cinterface==

+ findExpenses(staffid - Infeger) : List

t
+ findExpenses(statiie - Integer, year integer) : List
+ findExpenses{statie - nteger, year - ineger, manth : lnteger) : List

+ updateExpenses(expenses . Expenses) | void

+ remave(id - int) : voidt

7

<srepositorys>

- ertityManager : Entityhanager

locates

+ getErtityManager() : EntityManager
+

) veid

’{‘1

ssertity==

- lastModified : Date
- datePaid : Date:

+ seflasthodifiesasthoci
+ setExpensesStatus() : voi

+ getExpensesStatus() | ExpensesStatusType

et - Date) - void
il

has status >1 2

1

s currgntly in

1

«senumsx
ExpensesStatus Type

+ NEWY : ExpensesStalusType

+ SAVED : ExpensesStatusType

+ PENDING - ExpensesStatusType
+ REJECTED : ExpensesStatusType
+ APPROVED : ExpensesStalusType
+PAID : ExpensesStalusType

<<ertity==
Expenses

il Integer

- yeer - Integer
- marth : Integer
- week Integer

+ getExpensestems() : List

+ getTotalAmountr) : BigDecimal
+getTotaiMileage) | BigDecimal

+ getExpensesStatus(): ExpensesStatus
+ :

+pay(l: void

+ approve() : void
* reject) : void

=+ submiti) : void

< void

o incurred

“=teposhory=x

- ertityManager : EntityManager

+ gelErtityManager() - Eritybanager
.

3 voidd

cansits of

==erity=>
Project

- Integer

- description : String
- name : String

- code : String

booked agg

1‘\[J

=serlity=»
Expensesitem

- expenseDate : Date
- mnemoric : String

- tiles : BigDecimal

- rejected boolean

- rejectionReason: String
-l int

<=reposttory=»

' ExpensesCategoryRepositorylmpl

+ getamourt() : BigDecimal

+ gethiles() - BigDecimal
+isRejected() : bockean

+ getRejectionReasan() : Sring

+ setAmourt(amount : BigDecimel) : void

H - ertitybanager : EntityManager

N
+ setRejectionRe

BigDecimal) : void
ssan(rejectionReason : String) : void

+ gelErtityManager() : Ertitybanager
N i

3 veid

ssinterfaces=
ExpensesCategoryRepository

' + inaiie - int) - EqensesCategory

<<enity=>

- neme: Siring

- type : ExpensesCetegary
- mileage : BigDecimal

- amourt : BigDecimal

- miles : BigDecimal

«zertity==
Staffember

- Integer

title - String

- firsthame : String

- lastiame : String

- dat=O1Birth : Date

- nationalinsuranceniumber : String
- gender : char

- emailddress : String
- workTelNo - String

- homeTeiNo - String

- taxCode : String

+getlzer(): void
+zetzer(): void
+ getRole() : vaidd
+

urt
+ setiddress(): void

+ getEmploymentDetails() : void

+ setRole() : void

+ getBiankAccourty) | Bankaccourt
+ getaddress() : void

+ setEmploymentDetails() : void

) void

1

logs ogpe as

'

<sentity=>
User

- username : String

- password : String

- locked - boolean

- personalPhato : String

- expensesApprover : StaffMember
- holideyApprover - Stativember

- unSuccesstul oginAttempts : int
- candpproveHalidays : bodlean

- oandpproveExpenses | boolean

+ getlinSuccessfulloginAttempts() : int
+isLocked(): boolean

+ getExpensesApprover() : Staffiember
+ getHolidayappraver() : StaffMember

+ getPassword() : String

+ getRole) | Role

+ getRolefrole : Role) : void

+ getExpensesStafi(): List
+ getHolidayStafi(): List

+ isHeliday.Approver(): baolean

+ isExpensesfpprover() hoolean

<<ty
MileageCost

- lowerLimit : BigDecimal
- upperLimit : BigDecimsl
- cost : BigDecimal

\ 0.4
| + FINATIE) © List S
: + findlEy Typo(type - String) : Epensestategary N o puites
. + updiste(expensesType . ExpensesCategory] - woid . ar
! + remave(sxpensesType : BpensesCaiegor) - void 1
<‘7 <aerfity==
ExpensesCategory
<interfacer>
~type: String
- hasMileage boolean
+ Wt - Integer, . : -id Integer [
+ findExpenses(staffid lnteger, year ; Integer, queryingStaff . StaitMember) : List + getTypeq) : String 0.1
+ findExpenses(siafid - nteger, year . Integer, manth Integer, queryingSiaff - StaffMember : List + setType(iype - Siring) : void
. . Expenses, vaid
Expenses, . vl

.
+ payexpense
.

Expenses, payingSta - StaftMermber) | void
Expel

+ save(expense | Eqpenses, SAVIngStart | StafMember) : vold

Fvold

+isHasMilzage() - bookean

+ setHashieagethasMieage | boolean) : void

+ gelLowerLimit() : BigDecimal

+ getllpperLimit() : BigDecimal

+ getCost() : BigDecimal

+ selLoverLimit(lowverLimi : BigDecimal) : void
+ sellipperLimit(upperLimit BigDecimel) : void

+ setCost(cost : BigDecimal) : void

Figure 36. Expenses classes and dependencies (Generic repository classes
omitted for clarity)

94

7.2.3 Holiday package:

The Holiday package contains classes such as Holiday, HolidayYear and
HolidayStatusType. The class diagram below outline the detailed classes for the
Holidays package and contains a repositories and a service as follows:

* HolidaysRepositorylmpl — responsible for saving and retrieving Holiday,
HolidayYear and HolidayStatusType from database.

As mentioned above for Expenses class the same applies to the HolidayYear
class in the fact that it depends on the StaffMember class as indicated by the
composition association in the class diagram below, but it is retrieved separately
using the HolidaysRepository. This was achieved by including the reference to
the StaffMember in the HolidaysYear object instead of referencing a collection of
HolidaysYear from the StaffMember object.

Holiday management service

The HolidaysManagementServicelmpl class provides an implementation of all the
business logic that was required to satisfy the various holidays management use
cases through the methods shown below in Figure 38. The service also provides
the interface HolidaysManagementService for clients use to hide the
implementation. The service class makes use of other repositories and services
such as the HolidaysRepository and the TaskManagementService to retrieve and
update holidays related entities. These private instance variables are not
instantiated by the service instead these are injected using the Spring framework
at runtime using Dependency Injection (Figure 37).

@ holidaysManagementService
(F) holidaysRepository
(F) taskManagementService

|t'ah hDIidaysREpusib:uryl @ taskManagementService)
(F) taskRepository

@ taskRepository

Figure 37. Spring beans schematic for HolidaysManagementServicelmpl

95

B com.officema.zervices.holidays
= 9 HolidaysManagementServiceImpl
;8 log: Log
o holidaysRepository @ HolidaysRepository
;7 taskManagementService TaskManagementService
@ setHolidaysRepository(HolidaysRepository)
@ setTaskManagementService(TaskManagementservice)
@ .. approveHoliday(List<HolidayYear =, StaffMember)
@ - canceldpprovedHoliday{List<HolidayYear =, StaffMember)
@~ cancelRequestedHoliday(List<HolidayYear =, StaffMember)
@ . create(HolidayYear)
@ . findByYear(int)
@ . findByYearAndStaffld(int, int)
@ . reguestiewHoliday(List<HolidayYear =, Staffember)

Figure 38. Methods defined by the HolidaysManagementServicelmpl

Implementation Details

The Holidays package classes were implemented using the following classes
including fully qualified package names:

« com.officema.model.holidays.types.HolidayStatusType.java
» com.officema.model.holidays.Holiday.java
» com.officema.model.holidays.HolidayYear.java

» com.officema.persistence.dao.jpa.HolidaysRepositorylmpl.java
» com.officema.persistence.dao.HolidaysRepository.java

» com.officema.services.holidays.HolidaysManagementService.java
» com.officema.services.holidays.HolidaysManagementServicelmpl.java

96

==entity==
StaffMember

-id : Integer

- itle : String

- firstiame : String

- lasthlame : String

- dateCfBirth : Date

- nationallnsuranceMumber © String
- gender : char

- emaildddress ; String

- weorkTelMo : String

==entity==
HolidayYear

- year :int

- totalErtitliement :
- carryOver :int

- daysinLieu : int
-id :int

+ getTakenHoliday=() : flost

int

- homeTelMao : String
-taxCode : String

+ getlzer() : void

+ setlzer) : void

+ getRole) : void

+ zetBankAccount;bankAccount : BankAccourt) : voi
+ setAddress) void

+ getEmploymentDetail=) : woid

+ zetRolel]) : vaid

+ getBankAccount) | BankAccount

+ getiddress() : void

+ setEmploymentDetails) © woid

books holiday for >

==ertity==
Holiday

- bookedDate : Date
- fullDay : boolean
- fromYear ; int

- id :int

+ getBookedDatel) | Date
+ izFullDay() : boolean
+ getFromyear() : int

1.2

iz currently in status

1

==ENLTEE
HolidayStatusType

+ APPROVED : HolideyStatusType

+ TAKEM . HolidayStatusTyvpe

+ REJECTED : HolidayStatusType

+ REGQUESTED : HolidayStatusType

Holid:

==interface==
M: vice

+ findByYearfyear : int) - List

+ fincfyear : Int, stafficd : int) : HolidayYear
- updatefholidayYear : Holiday'¥ear) : Holiday'Year
+canceiﬁeq’uestedﬁoﬂday{hoIJdays List, cancellingStalt : StaftMember) - vol

adican 1y

S List, ¢ i)

Staff : StaitMember) void

+ approveHo.deey{ho.deays List, approvingStalf © StaftMember) : vald

+ cahceldppravedHalidayihalidays | List, cancellingStalf © StaftMember) © vald
createfholidayYear : Holiday'¥ear) | Holiday'Year

=<interface=:
TaskManagementService

createftask : Task): Task

+ findAtifstaffied - int, quendingStaft StaftMember »int) - Lis
+ finclicd it guendngStaft | StaffMember) - Task

+ updatetask : Task, queningStaff : StafftMember) | Tas,
+ remavelic | Int, quenyingStalt | StaffMember) : Task

0." s Foen
s

0.2 | + getRequestedHolidays() : float
1 + getRemainingHoliday=() © flost
49| + getHolidays() : List

+ getApprovedHolidays() : float

+ cancelRequestedHoliday(holidays : List) : void
+ reguestiewHoliday(holidays - List) : void

+ approveHoliday(holidays © List) : void

+ cancelApprovedHolidsy(holidsys © List) : woid
+ getStaffld() : Integer

I

locates

==interfaces==
HolidaysRepository

+ findByYearivear - int) : List
+ fincivear - nt, staffld - Int) - HolidayYear
+ ypdateholidayYear : HolidayYear) : HalidayYear

7

=<repository==
HolidaysRepositoryimpl

- entityManager : EntityManager

+ getEntitybanager() . EntityManager
+ setErtityManager(entityManager : EntityManager) : void

1

‘ uzes

Figure 39. Holidays classes and dependencies (Generic repository classes
omitted for clarity)

97

7.2.4 Staff package:

The Staff package is the largest and the most important package in the
application. The package is centric around the StaffMember class, but also
include other entity classes such as Grade, Accountant, Administrator,
GenericRole, RegularStaff, Role, EmploymentType, Gender,

OperationType, Responsibility, ResponsibilityType, RoleType, Title, Address,
BankAccount, EmploymentDetails, StaffMember, User. The class diagram in
Figure 38 outlines the detailed classes for the Staff package and contains a
number of repositories and a service as follows:

+ StaffMemberRepositorylmpl — responsible for saving and retrieving
Address, BankAccount, EmploymentDetails, StaffMember from database.

» RoleRepositorylmpl — responsible for saving and retrieving GenericRole
subclasses Accountant, Administrator, RegularStaff.

Staff members’ roles

Roles the staff package is modelled using a number of objects as shown in the
diagram below. The staff roles are defined using an interface (Role) that clients
can reference, then a generic abstract super class is defined (GenericRole), this
class defines all the common functionality required by the various roles. Three
subclasses are defined to inherit form the GenericRole super class, these are:
Administrator, Accountant and ReguarlStaff. The role class define the same
methods signature, but each class implements these methods differently
depending on what each role can do.

This role hierarchy was modelled in the conceptual database design using the
enhance ER entity subtypes feature [8]. When mapping these to the database a
single table for the GenericRole class hierarchy was used. As Baur and King [2]
have outlined that this mapping strategy is the winner in terms of simplicity and
performance, and the fact that all the classes contain the same attribute there will
not be a problem with some columns holding null for the attributes of a specific
role class. The concrete class represented by a particular row is identified by a
discriminator column [2] using the JPA annotation in the code snippet below:

@Entity
@Table (name = "Roles")
@Inheritance (strategy=InheritanceType.SINGLE TABLE)
@DiscriminatorColumn (
name="role type",
discriminatorType=DiscriminatorType.STRING
)

public abstract class GenericRole implements Role, Serializable {

98

==interface=»
Role

==interface==
RoleRepository

+ getExpensasStatusasd lowedy) @ Lis
+ getlfliewsbiaStafDetalis() | List - - mm— - — - —— - - -
+ Jadccountanty) | boolean locates

+ iaddministrator) ;| boolean
+ isRagiaratai) | hooleah

+ geffypel) | String £

T

+ finciRolefraleTine - Shingl @ Role
+ fnctdifRoias?) © List
+ UpdateRaoleffale | Rolgl © Role

RoleRepositornydmpl
- entityManadger : EntityManager

GenericRole
- type : String
+ getExpensesStatuseshllowed | Lis
+ getviewableStaffDetails() : List ==gntity==
+igAccountantd) : boolean User

+ isAdministratard) : hoalean
+ isRegularStaff) : boolean - nassword - Stin
+ getTyped - String - Ipncked : bl:l.nleang

- personalPhoto String

- e¥pensesApprover ; Staffilember
- holidavapprover ; Stafflember

- unSuccesstulLoginAttempts ©int
- canApproveHolidays - boolean

- username ; String

<eantity== ==entity=» - canfpproveExpenses | hoolean
ety RegularStaff
Accountant + getUnSuccessfulLoginAttempts(© int

. + .
+isAccourtart - boolean + IsRegularstafty - booleanf | | L_:Sel?gilseeige:;;ﬁ;?erg - Stafiembe
+ getHolidavapproverd | Staffember
+ getPasswoard(: String

==gnlity== * QEEED:E? :IRDE le - vaid

- + zetRolefrole : Role) : vai

Administrator + getExpensesStaff() : List
+ getHalidayStaff() : List
+isHolidayApproverd : boolean
+isExpensesApprover - boolean

+ isAdministratar() - hoaolean

Figure 40. Role classes and dependencies (Generic repository classes omitted
for clarity)

Staff management service

The StaffManagementServicelmpl class provides an implementation of all the
business logic that is required to satisfy the various staff management use cases
through the methods shown below in Figure 42. The service also provides the
interface StaffManagementService for clients use to hide the implementation.
The service class makes use of other repositories such as the
WorkStreamRepository, RoleRepository, GradeRepository and
StaffMemberRepository to retrieve and update staff related entities. These
private instance variables are not instantiated by the service instead these are

99

injected using the Spring framework at runtime using Dependency Injection

(Figure 41).

@ staffMemberAction
(5 reference <staffMana...

@ staffManagementService
(F) staffvlemberRepasitory
(F) workStreamRepository
(F) gradeRepository

(F) roleRepository

|® wurkSt’eaFnRepusib:uryl |® ru:uIERepu:usib:urr_.-'| |'& gradeREstitory| |@ stafﬁ'ﬂemEerRepusituryl

Figure 41. Spring beans schematic for StaffManagementServicelmpl

8 com.officema.services.staff

[=MC] StaffManagementServiceImpl

log : Log

staffvemberRepasitory : StaffMemberRepasitory
workStreamRepository @ WorkStreamRepasitory
gradeRepository : GradeRepository

roleRepository ; RoleRepository
getRoleRepository()

setRoleRepository (RoleRepository)
getStaffMemberRepository ()
setStaffMemberRepository(StaffMemberRepasitory)
getWorkStreamRepository ()
setWorkStreamRepository (WorkStreamRepository)
getGradeRepository()
setGradeRepository{GradeRepository)

B assignResponsibility (Responsibility[], StaffMember)
@ .. createStaffMember(StaffMember, RoleType, Set<Integer =, String, Role, Responsibility...)

& © & ©® ®® % o ooooan

@ . updateStaffember(StaffMember, RoleType, Set<Integer=, String, Integer, Responsibility...)

@ ~ findStaffMember(Integer, Integer)
@ - findallstaffMembers(Raole)

@ - findByUsername(String)

@ -~ authenticate(String, String)

@ -~ getExpensesApprovers()

@ -~ getHolidayApprovers()

@ -~ getStafflames()

Figure 42. Methods defined by the StaffManaée-r.n-er;t-S-erv-i(.:"elfn-p-)l-

Create staff sequence diagram

Figure 43 below show the sequence diagram for the createStaffMember method

100

stafflermberService : staffMermberRepo : ==interface=» ==gnfity=» ==gntity== gradeRepo workStreamRepo ==entity==
- mdministrator StafflanagementSerdcelmpl StaffdemberRepository creatingRole : Raole staffMember : user: User GradeRepository WorkStreamRepository employmentDetails :
. T T T StaffMember T T EmploymentDetails
1: createftafember(staMember Stafernper, roleType RoleType, workSireamsids:Set<integer=, gradeCodg String, creatir HiE, Tespunsibiliies:Rgsponsibility) : Stafdembpr T T
' | | I | ! | I
| | ! | ! | !
opt ; ; I I I I I T I
[none offirfput details is null] | | | | | | |
2: pgrmitted = isOperationPermitted({operation:OperationType) : baolgan | | | | |
T
____________ L _ﬁﬁ I | | \ I
IS | i l | | | l
| | | | | \ |
opt [pefrited = trug] | | | | | | |
. _ | | I [| \ |
3: egistingStafl = findByDelajls(firsthlame: String, lasthame:String, dob:Date) : StafMember | | | | | |
| I | | \ I
oo T | I | | [I
=| \ \ | \ , | |
opt [existingStaft= null] i i | i ; | |
4 uger = getlser(: User | .;| | | ‘ l
| | JJ | \ | !
A B R | \ | I
| = SetRoIe(ro\eType:RoIeTyﬁe) void | | | ‘ |
| I I | [|
| | | \ [|
N | B: grade = findByCodd{arade Code:String) : Glade | | | |
| | I | [|
********************** e I [I
T assigpRespongibilitrirespo Responsibility], StaﬁStaﬁMFmber) svoid | | | | | |
| | I | | \ I
| 8: workStreamg = findAlltids:Set=Inteder=) : List=WorkStraan = | [| |
| |
|
|

e — — —

11 up

____________ e e e e
| 9.Sethade(grade.Grade).\ru|d -
| | |
| 10: setworkStteamstworkStreams:List : void =
Ll
|

e(=tafflember.StafMember) :

Eﬁﬁﬂember
ke — — ————

9

Figure 43. Sequence diagram for the createStaffMember

101

Authenticate staff sequence diagram

One of the methods implemented by the StaffManagementServicelmpl is the
authenticate method used to authenticate and retrieve the staff member details
when they login to the application. The method takes a username and password
and tries to retrieve a staff member details from the database that match the
supplied details and various exceptions are thrown if a staff member matching
the details is not found or if the staff member’s account is locked. The method is
also responsible for calling the User.authenticate method which will check the
input password against the user’s stored password and lock the account if the
maximum invalid login attempts are exceeded.

In the context of a web application, the authenticate method alone is not enough
because the web application need to remember that the user has authenticate for
as long as they are using the application. This is achieved through the use of
sessions provided by the Java javax.servlet.http.HttpSession, which can be used
to store any objects. In this case when the user is authenticated then their
StaffMember object will be stored in the session and used as an indication that
this user has already logged into the application (as will be explained in the
presentation layer section below), and these details stays in the session until the
user logout or their session expires.

stafflemberService : stafemberRepo ==@ntity== =<entity==
- Etar StaffManagementServicelmpl StaffernberRepository staffember : user: User

Staffember

1 authentica{e(username:String, psiskvnrd:string) : Staffember

opt
n [username and pasgword are not empty]

|
| [
I |
I |
I |
T
I |
1.1: stafiember|S ﬂndByUsername(username:ﬁﬂ]ng) : Stafiember :
|
|
|
|

[l
T
ot [staember 1= null &k stafiember.getUser) = null |

1.2;user = getUal.erO s woid
I

opt H [locked = false] |

|

|

1.4: authemicéte(password:string) . vo‘d
I T

| |
|

|

|

Il

T

|

T

1.5: updatastafiember. Stafiember :%ﬁnﬂember

S T

Figure 44. Sequence diagram for the authenticate

102

Implementation Details

The Staff package classes were implemented using the following classes
including fully qualified package names:

« com.officema.model.staff.grades.Grade.java

« com.officema.model.staff.roles.Accountant.java

» com.officema.model.staff.roles.Administrator.java

« com.officema.model.staff.roles.GenericRole.java

» com.officema.model.staff.roles.RegularStaff.java

« com.officema.model.staff.roles.Role.java

» com.officema.model.staff.types.EmploymentType.java
« com.officema.model.staff.types.Gender.java

» com.officema.model.staff.types.OperationType.java

« com.officema.model.staff.types.Responsibility.java

« com.officema.model.staff.types.ResponsibilityType.java
« com.officema.model.staff.types.RoleType.java

» com.officema.model.staff.types.Title.java

« com.officema.model.staff. Address.java

« com.officema.model.staff. BankAccount.java

» com.officema.model.staff. EmploymentDetails.java

» com.officema.model.staff.StaffMember.java

» com.officema.model.staff.User.java

» com.officema.persistence.dao.jpa.GradeRepositorylmpl.java

» com.officema.persistence.dao.jpa.RoleRepositorylmpl.java

« com.officema.persistence.dao.jpa.StaffMemberRepositorylmpl.java
« com.officema.persistence.dao.GradeRepository.java

» com.officema.persistence.dao.RoleRepository.java

» com.officema.persistence.dao.StaffMemberRepository.java

» com.officema.services.staff.StaffManagementService.java
« com.officema.services.staff.StaffManagementServicelmpl.java

103

GerericRole

type : Sting <<antity 33
ertity
+ get Expenses Htatuses Mlowed() ; List Regular Staff
+ getidewable Staff Details() ; List -
+ ischugﬂﬂhb?b?n +izRegular$taff() : boolea
+isAdministraton ; boolean
+isReguiaritaff(: boolzan
+getType() : String
= T
/ R
' \
<cinterface>>
StaffManagement Service
¢ gentity > < Lentity >
socourtant I Bdministratar *oreate StafVemter(stafieber . Starfhienber, ok Type . String, work Streansids . List, grae Code . Siring, creating Role Type . Stiing) : Starember
+upaate : L e Type Sting, worki Steams s ¢ Ust, pradeCode | Sting, apdatingRoke Type & Sidng) - Stamiender
+ishosountants) ; boalean +i) : boalean il - Integer, querying RoleType © String) : StarMember
iguerying Rake Type ; Sting) ; List
: 7,
<<interface >
RaleRegasitory =
- 1 “izervicerr
I?ﬁfﬁm””* Stng) - ok uzes ———————————{ stafftanagementServiceimpl
+update ok (ole | Fole) : Role .
T - Role Repositaryimpl 1) ~
H - entityhanager : Entityhianagdr | N
" | e
" f \
Iocftes | T <dinterface>>
& ccinterfasers | GradeRepository
Staff Member Reposit |
<einerfaces> ererheposony f + il Giae fgraniedd - int) - Grade
Role +update StarMembe ristatMenber - StafVeaber) | StatiMendr Iﬁﬁﬁiﬂiﬁ“‘é}mf ek - Grac
taifh - int) -
+getExpanses Statusesilo wed () ; U Al StV bers) L,S,‘] + maove Grat fgrade d © int) - void
+getliic wabke Staifetais() ; List . . ;
+isfiocourtant() ; boakan | - :
+isddninistrator() ; boolean ! -~ H
+fs§;gu¢erseasﬁ;g :bookean Staff Mamber Repositaryimpl !
+getTypel) - i
getTypeq String locates entityManager : EtityManagdr | ‘
il . reil}sgﬁetails o> j | '
! . s | B
f <ertity>> 1 ! '
StaffMember s .
has# " d : Int <iterfages? locates
[y e ;ﬁf‘; “Wark StreamRepository
o0 - firstHame : String g .
<Eentity > > - l2stName : String - . . N
User - dme i Birth - Date o StRansy | Lt . 1
i . i : :
Usemame : String _;:::2:”';‘;’?”““”’“"“ : String + remove bt Shram{wort Sreaadd int) - boolean
- paszward : Striny 4 . -
fooad - bacan i E’“:('.'ffﬂm“sg String
- persenalPhete : String - work [ellia : String h
- homeTel Mo : String . <entity>>
- expensesfpprover ; Statfhember 1l o Jocktes
 halidayAppraver ; Statfhember 1 gl tHEede : String " Grade
- un SucvessfulLoginAtempts ; int 1 — +getUser() - oid b - vode : String
- candpproveHolidays : boolean —<415g arline as + setUser) : void <lertity > - name : String
- canépprove Eepenzes © boolean +getRoler) © woid “WorkStream - minimum Salary : Big Decimal
T ———— sk conuntbani fccourt : Sankceoure) : vid Fp—— - maximumSalary : BgDecimal
+isLocked() : baolean e N s woid - deseription : String 2
+ getExpenzasApprover() ; Staffikmbgr :g;‘RoIESYTm etail= ; o - name : String +getCodal) : String
:ﬁ;‘;ﬁ:ﬂggm&? ¢ Staffidember + gatBankFecount() ; BankAccount + getProjects() : List :Siﬁ:rd:e%“; ; Sting) : veid
+getRoI20' T 4 +getAddresse) : woid + st Projectsiprajects : List) | wol El Qsmng)_wid
+ zetRoleqrole : Role) : void 0.1 +setEmploymentDetails() : void +getMn|mumSaIary0 Big Decimal
+getExpensasStatt) ; List s ¥ + sethinimum Salaryminimum Salary : BigDecimal) ; voi
+ getHoliday Staff() : List - (Y + gethtsximum Salary() : BigDecimal
+isHliday Approver) ; boglean | \ + sethiaximum Salary(mazimum Salary ; Big Decimal) : vi
+isExpenses fpprovers) ; boolean | \ +getld() : Integer
| \ +setld(id ; Intager) © woid
k) Ed
\ \ [1
: _ \ |
AY /
: N4
<sentivy»> \ is assfgned to
Bddrass |
< cantity > - houseName : String o.- <{ 0.r
Task - houseHumber : String ' 2
o - addressLine1 : String <<entity>> <centity s>
- taskType : TaskType 'add'ESSS{JPEQ String EBanklscount Employment Detail s
- deseription : String et g ~sontCode : Integer - dateoined : Date
- completed : boolean . postCode : String - apoountHumber : Integer - employmentType : String
+ getTaskType() : TaskType country - $tring - bankMame : String - IlnleMar\afgIe;t Seatihiemier
+ get Description() - Strin - salary : flo
a ption) 9 + getHouseMamed) : String +getSortCoder) ; Integer] '+ PERMAMENT STAFF : Strin
+isCompleted() | boalean . ; . + PERMANENT STAFF : String.
© etTasTypatasiTyps : TaskType) : vold +s§:ouse:am:(h%usehlame String) : waid :;:{t:gﬁﬁﬁ;ﬁga In:r:eegrerj void S CONTRACTOR: STAFF - Sting
+getHousz Humbe: - -
:zang:”‘gt‘:g‘((::??;‘e‘%” bg‘of“zgg) “‘f:f + =atHouse Numbarthouss Number : String) : voidl | +SetAceount Numben(aceount Number : Integer) : wid | + setiork Streamswork Streams : List) : void
P P + getAddressLine1() : String +get Bank Name) : String + setGrade(grade : Grade] : void
+Se¢pdd,ess|_me1(add,ess|_me1 String) : void | | +setBankNamatbankMame : String) : void + getiork Streams() - List
+get AddressLined() : +getalPrjects() : List
+se(.PddressLmei(addressLmei String) : woid + 3ddWork tream : Wiork Stream) : ejd
+getTown() : String
+ setTounifoun © String) : vaid
+get County() - String
+ et County(eaunty : String) : waid
+gatfost Codar) : String
+ et Fost Codaipost Cade © String) : woid
+get Country() | String
+ et Country(gountry : String! : vaid

Figure 45. Staff classes and dependencies (Generic repository classes omitted

for clarity)

104

7.2.5 Task package:

The Task package contains classes such as Task and TaskType. The class
diagram below outline the detailed classes for the Task package and contains a
repositories and a service as follows:

» TaskRepositorylmpl — responsible for saving and retrieving the Task entity
from database.

The Task class references an instance of StaffMember the same approach that
was used above for Expenses and HolidayYear classes. The class also contains
a ManyToOne annotation on the StaffMember instance variable. The Task class
is dependent on the StaffMember class as depicted by the class diagram below
through the composition association. The types of tasks and their messages
were implemented using a Java Enum in the TaskType class. The class
demonstrates the strengths of Java Enum by providing a constructor method that
was used to read a custom message for each TaskType from a file
“MessageResource.properties” so that changes to message can be done without
changing the code itself as shown in the code snippet below:

private TaskType (String messageKey, String taskName) {
Properties defaultProps = new Properties|();
try {
defaultProps.load (TaskType.class.
getResourceAsStream ("MessageResource.properties"));
} catch (IOException ioe) {
log.error("Failed to load properties in” +
“ TaskType constructor", ioe);
}
this.taskMessage = defaultProps.getProperty (messageKey) ;
this.taskName = taskName;

Task management service

The TaskManagementServicelmpl class provide an implementation of all the
business logic that was required to satisfy the various task management use
cases through the methods shown below in Figure 47. The service also provides
the interface TaskManagementService for clients use to hide the implementation.
The service class makes use of TaskRepository to retrieve and update tasks
related entities. This private instance variable is injected using the Spring
framework at runtime using Dependency Injection (Figure 46).

105

@ taskManagementService
(F) taskRepository

@ taskRepository|

Figure 46. Spring beans schematic for TaskManagementServicelmpl

B com.officema. services. tasks

=@ TaskManagementServiceImpl
o taskRepository : TaskRepository
o log:log
@ - createTask(TaskType, Staffvember, Object...)
@ . find(Integer, Staffiember)
@ . findall{StaffMember)
@ . remove(Integer, StaffMember)
@ . update(Task, StaffMember)
@ setTaskRepository(TaskRepository)

Figure 47. Methods defined by the TaskManagementServicelmpl

Implementation Details

The Task package classes were implemented using the following classes
including fully qualified package names:

com.officema.model.tasks.types.TaskType.java

com.officema.persistence.dao.jpa.TaskRepositorylmpl.java
com.officema.persistence.dao.TaskRepository.java

com.officema.services.tasks. TaskManagementService.java
com.officema.services.tasks. TaskManagementServicelmpl.java

106

GenericRepositoryimpl [GenericRepository<T,ID>
- entityManager : EntityManager ~ _jl';,
- persistentClass | Class=T= == - :
=7 ==hind==
+ GenericRepositarylmpl) “TosT Ib-=ID3=
+ getPersistentClassd | Class=T= P ety

+ getEntityManager) : EntityManager - s 1L IE
+ setEntityManagerientityManager : EntityManager) : wvoid <<|r_1terface=_>
+findAll ; List=T= GenericRepository
+find(id 10} T —— :
+ remavelid ; 1D ; void + fingitict 109 . T
+flush{l ; void + fincfdNiQ) | List=T=

+ cleard) [void + Updatefentity (T T
+ ramove(id 10 voidd

==gntity==
Task

==interface==
TaskRepository ~id s int
- taskType : TaskType
+ finclaficatafiicl : ind - List . - description : String
+ finciicd : Inf) : Task ocates - _ completed : boolean
. . .
™ o Tk
+ getDescription() : String

§] +isCompletedd : boolean

r + gefTaskTypeitaskType TaskType) [void
, + setDescription{description : String) : void
¢ + setCompletedicompleted : hoolean) : waid

==repository== ==interface==
TaskRepositondmpl TaskManagementService
- antityManager ; EntityManager

+ fnctA it staffic D int quensngStalf Staflerber : inf © List
+ getEntitytanagerd : EntityManager + fincificd : int queningStal : Stafamber) © Task

+ setEntiyManagertentityManager : EntityManager) waid + upclateitask | Task, QueningStal: Stamiamber) | Task
+ remove(io | int quensdngStalf - Staflember) | Task

createftasi | Task) | Task

RN

-
-
-
-

use

==SENiCeR=
TaskManagementServicelmpl

Figure 48. Task classes and dependencies

7.2.6 Testing the domain model

As outlined in subsection (6.3.6) unit testing was done using the JUnit framework
to test the business logic and the domain model. The approach used was to test
a service class as soon as it was completed in an attempt to phase out any
issues or bugs; this ensured that the unit being tested worked successfully as a
unit and as part of the whole model. The test classes were implemented in the
“/OfficeMA/test” folder.

107

7.3 User Interface Design and Implementation

The user interface was implemented in two parts, the presentation logic layer
which consists of a number of action classes and the user interface which
comprises JavaScript, cascaded style sheets, HTML and images.

St r u ts [HttpServietRequest]

—_—

A
ActionContexiCleanUp J
Other filters (SiteMesh, etc) J
FilterDispatcher J
X ﬁ I v

» Interceptor 1)

ActionProxy ActionMapper

[Interceptor2) | J
I " Interceptor 3) Tag Subsystem
Configuration I I HTML, Dojo, forms, etc

Manager Action Action) B y

) | Invocation

2 JSP, FreeMarker, Velocity, etc

Interceptor 3 |
struts.xml T—'—ﬁ J

(" Interceptor 2)

S,
~ Interceptor 1)
.
—
HttpServIetFIesponseJ—
Key:
Serviet Filters Struts Core Interceptors User created

Figure 49. Struts 2 request flow [44].

As explained in subsection (6.4.1) Struts 2 framework was used to implement the
presentation logic layer. The presentation classes were implemented in the
com.officema.presentation package. For the purpose of this application a
number of Action classes were created as highlighted in yellow in Figure 47
above. The file struts.xml holds the entire configuration for the Action classes and
the type of their results (highlighted in blue). An Interceptor class
(com.officema.presentation.interceptors.Authenticationinterceptor.java) was also
created to validate the user’s session upon each HTTP request to check that the
user has authenticated, if not then it redirects the user to the login page.

108

7.3.1 Application action classes

An action class is simply a Java class that has a method named execute, which
Struts 2 invokes automatically at runtime. The user can also declare any other
method and tell Struts to call it by declaring this in the struts.xml files as shown in
the snippet below:

<action name="queryAllStaff" method="queryAll"
class="queryStaffAction">
<result type="json">
<param name="excludeProperties">staffMember,
staffed
</param>
</result>
</action>

The snippet shows the mapping for one of the action classes used to query all
the staff details as the name imply, also the method name that will be invoked by
Struts is declared as “queryAll”. The results for the action class on the other hand
are declared to be of type “json”, this will automatically serialize the Java objects
on the HTTP response scope (called the value stack) into JSON strings using the
JSON plug-in [62]. The user can also exclude a number of objects in the value
stack from being serialized using the “excludeProperties”. The Struts result could
also be a Java Server Page (JSP), a static HTML page or another action class to
chain actions together.

- src
=-ff} com.officema
+ EFJ‘ exceptions
- H model
+-[H persistence.dao
= r'FJl presentation
= r'FJl actions
2 authentication
7 desktop
i entities
H expenses
B holidays
EFJ‘ settings
H staff
7 task
D] Constants.java 234 11/03/08 08:55 omerio
Dﬁ FormStaticDataSupport.java 309 13/05/08 23:03 omerio
'_l] OfficeMaActionSupport.java 222 03/03/08 00:29 omerio
D OfficeMaActionSupport.properties 166 06/02/08 21:41 omerio
4 EFJ‘ interceptors
+ "'FJ‘ services
- utils
-4 workflow
-5 resources
#- [y META-INF
D configuration. properties 278 20,0408 13:54 omerio
¥} ehcache.xml 230 20/04/08 21:22 omerio
D globalMessages. properties 160 02/02/08 21:53 omerio
4§ hibernate.cfg.xml 112 11/01/08 17:43 omerio
E=] log4j.properties 280 20/04/08 21:22 omerio
¥} struts.xml 220 02f03/08 14:25 omerio
¥} struts-officema-desktop.xml 311 15/05/08 00:12 omerio
-7 test

Figure 50. Package structure for presentation layer

R e I 2 e O 2 = O 2 o = O

109

Figure 50 above shows the various source files for the presentation logic layer,
below is an explanation of the various packages and their significance. Each
package also contains the relevant validation definition XML files:

com.officema.presentation package - this package contains the
OfficeMaActionSupport super class that all the action classes inherit. This
class defines the common functionality required by the application action
classes such as the ResultStatus class required by the user interface.

Authentication package — contains the action classes concerned with
logging in and out of the application. The classes in this package make
use of the StaffManagementService class to authenticate the users to the
application.

Desktop package — contains the action classes that are concerned with
displaying the application desktop such as the
com.officema.presentation.actions.desktop.DesktopLauncherAction.java
class. This class declares its result in struts.xml as the main JSP for the
application that contains the entire HTML required to build the user
interface on the client side.

Entities package — contains user interface model and wrapper classes
that wrap the domain model object to either restrict or mutate their
properties.

Expenses package — contains the action classes that deal with the
expenses functionality and the various requests from the user interface. All
the results of the action classes of this package are declared as “json”
type. The ~classes in this package make wuse of the
ExpensesManagementService class to retrieve and update expenses.

Holiday package — contains the action classes that deal with the holiday
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the HolidaysManagementService
class to retrieve and update holidays.

Staff package — contains the action classes that deal with the staff
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the StaffManagementService
class to retrieve and update staff details.

Settings package — contains the action classes that deal with updating
instances such WorkStream, Project, Grade, ExpensesCategory and
Roles. All the results of the action classes of this package are declared as
‘ison” type. The classes in this package make use of the
SystemSettingsService class to retrieve and update these details.

110

» Task package — contains the action classes that deal with the task
functionality and the various requests from the user interface. All the
results of the action classes of this package are declared as “json” type.
The classes in this package make use of the TaskManagementService
class to retrieve and update tasks.

Implementation Details

Java classes:

« com.officema.presentation.actions.authentication.LoginAction.java

« com.officema.presentation.actions.authentication.LogoutAction.java

» com.officema.presentation.actions.desktop.DesktopLauncherAction.java

« com.officema.presentation.actions.entities.wrappers.EmploymentDetailsW
rapper.java

« com.officema.presentation.actions.entities.wrappers.StaffMemberWrapper.
java

« com.officema.presentation.actions.entities.wrappers.UserWrapper.java

» com.officema.presentation.actions.entities.CurrentUser.java

« com.officema.presentation.actions.entities.ResultStatus.java

« com.officema.presentation.actions.entities.StaffDetails.java

» com.officema.presentation.actions.entities.StatusType.java

« com.officema.presentation.actions.expenses.ExpensesQueryAction.java

« com.officema.presentation.actions.expenses.ExpensesUpdateAction.java

« com.officema.presentation.actions.holidays.HolidaysQueryAction.java

» com.officema.presentation.actions.holidays.HolidaysUpdateAction.java

« com.officema.presentation.actions.settings.SystemSettingsQueryAction.ja
va

« com.officema.presentation.actions.settings.SystemSettingsUpdateAction.j
ava

« com.officema.presentation.actions.staff. FormStaticDataSupport.java

« com.officema.presentation.actions.staff. QueryStaffAction.java

» com.officema.presentation.actions.staff.StaffMemberAction.java

« com.officema.presentation.actions.staff.UpdateStaffAction.java

» com.officema.presentation.actions.task. TaskManagementAction.java

« com.officema.presentation.actions.Constants.java

« com.officema.presentation.actions.OfficeMaActionSupport.java

« com.officema.presentation.interceptors.Authenticationinterceptor.java

Other configuration files:

o /OfficeMA/src/struts.xml
» /OfficeMA/src/struts-officema-desktop.xml

111

« /OfficeMA/src/com/officemal/presentation/actions/OfficeMaActionSupport.p
roperties

» /OfficeMA/src/com/officemal/presentation/actions/staff/StaffMemberAction-
save-validation.xml

» /OfficeMA/src/com/officemal/presentation/actions/staff/QueryStaffAction-
query-validation.xml

» /OfficeMA/src/com/officemal/presentation/actions/staff/package.properties

« /OfficeMA/src/com/officemal/presentation/actions/authentication/LoginActio
n-validation.xml

« /OfficeMA/src/com/officemal/presentation/actions/settings/package.properti
es

7.3.2 User Interface Design

The user interface for the application was implemented by following the design
rules identified in subsection (2.6.3). The user interface has adhered to these
rules as summarised below. The description of the various windows in the
application and their functionality and purpose is described in more details in the
user guides developed as part of this project (Appendix H).

Simplicity and Structure

As mentioned before in subsection (2.4.2) the user interface followed an MDI
approach (Figure 51) similar to the one used in developing traditional desktop
applications. For this approach to work the browser’s conventional functions are
hidden and the application is loaded on a full browser window to maximize the
space used for the application. The browser right click menu was also replaced
by a custom menu for the application as the browser functionality such as refresh
or back is not relevant in this case. The application desktop source files are listed
below, these use the JSP technology:

» /OfficeMA/WebContent/WEB-INF/jsp/bodyContents.jsp
» /OfficeMA/WebContent/WEB-INF/bodyContents.jsp

» /OfficeMA/WebContent/WEB-INF/loader.jsp

+ /OfficeMA/WebContent/WEB-INF/menuAndToolbar.jsp
» /OfficeMA/WebContent/WEB-INF/menusDefinitions.jsp
» /OfficeMA/WebContent/WEB-INF/officema.jsp

» /OfficeMA/WebContent/WEB-INF/postLogin.jsp

112

r) http=//future - Office Management System v.1.0 - Mozilla Firefox

sy YRRl R e Ed

Staff Holiday Expenses TimeSheets Options Help Logout

Current user. Omer Dawelbeit
B2 [Done

‘ddress Details | Employment Details | Online Details |

2 O -mMale @

lawelbeit@gmail.com

LI e [=[o]x]
—Find Staff
Name: | [¥] Grade:| [¥] Employment Type: Contractor (3 Permanent
= = %

Name Date Joined- Waork Phone Email Employment Type Grade
Mark Thompson 20 Jan, 2008 07986534456 mark.thompson@gmail.com Permanent Senior Consultant
Thomas Handcock 20 Jan, 2008 thomas.hancock@hotmail.com Contractor Cansultant
Omer Dawelbeit 20 Jan, 2008 omer.dawelbeit@gmail.com Permanent Senior Consultant
Khalid Eldoud 29]an, 2008 01189656577 Permanent Consultant
Eduard Mulligan 12 Sep, 2007 02498874545 eduard.mulligan@hotmail.com Permanent Consultant
Amna Shibeika 04 Dec, 2007 amna.shibeika@gmail.com Permanent Principal Consultant

rax Loge™ Jp3uC
Viev >
Expenses

i

@ & ovennotebook &

Figure 51. Office Management Application desktop

Visibility, Affordance and Consistency

The interaction styles used for the user interface were summarised in subsection
(2.4.1), out of these styles the menu selection has been identified as the main
form of interaction in the application. This is achieved by choosing options from
the top menu bar. A toolbar is also provided for frequently used options, and as
the user hovers on top of any of the toolbar icons a tool-tip is displayed
summarising the purpose of the icon. Using this approach which is consistent
with Windows applications enables the user to easily figure out how to use the
controls to access the various features in the application.

Staff

Holiday Expenses

PUA s B2

Timesheets Options

Help Logout

Figure 52. OfficeMA menus and toolbar

The visual design for the project tried to follow some of the good user interface
practices outlined in the Window Vista user experience guide from Microsoft [71]

such as:

113

* The use of common controls and common dialogs
* The use of standard window frame.
» Using icons and graphics consistently

» Using task dialogue for various messages and apply a suitable icon to
indicate the current situation (Figure 54)

Feedback

Other features include the use of a busy logo whilst using AJAX to retrieve data
from the server (Figure 53). As the AJAX call is Asynchronous and the response
is returned by the Dojo toolkit using a call-back function; depending on the delay
it takes for the server to response the application shows a modal icon which
indicate to the user that the application is currently loading some data. This is
important from a usability point of view so that the user is aware of the current
state of the application. A timeout is also set to check if the server does not
response within a configurable timeframe to display an error message to the
user.

The application also makes use of information, warning and error dialogues
boxes (Figure 54) to convey the status of the application to the user.

I

Figure 53. An animated image to indicate the application is loading data

b] Are you sure you want to
'r’f exit this application?

@

[oror

@ . [Invalid field value for field "staffld".]

Figure 54. Message dialogues in the OfficeMA

114

Title*

Firstname*

Lastname*

Date of Birth*

Gender*

Email Address |

Work Phone* I * This value is required

Home Phone I

National Insurance I— ool e Sl L

Number* sl afbdni i

Tax Code* I This value is required.
X i

Figure 55. Add staff window.

Tolerance

The user interface was designed to minimize users from making errors by
performing interactive validation to user’s input which indicates to the user
immediately if they provided an invalid value for an input. An example is the
shown in Figure 55 in the Add staff window where mandatory fields are marked
on the window with an asterisk and a message indicating the value is required or
invalid.

Closure

Dialogue boxes and windows such as the Add staff window shown in Figure 55
are designed in a way it is clear to the user which dialogue is used for viewing or
updating information. In this case the window has two buttons one to save and
another to cancel. It is also made clear when input is required by the user and
when the action has been completed successfully. Feedback is given to the user
after the user submits their updates and the current data in the application is
refreshed accordingly.

115

Performance and Data Refresh

Performance in the application user interface is very much dependent on the
browser used, some browsers such as Firefox offer high performance compared
to others such as Internet Explorer. However, the user interface implemented
followed some of the best practices for efficient HTML manipulation such as the
use of JavaScript innerHTML function to append HTML elements to a DOM node
instead of using the createElement function which is slower. The user interface
performance is also dependent on the server’s performance when retrieving and
saving data, for this purpose many techniques were applied in the server to
enhance the performance of the application as discussed in subsection (7.5).

In regards to data refresh the application provides the ability for the user to
refresh the data where possible for example by providing a refresh button (Figure
56 below). The application also provides automated data refresh whenever a
window is opened or shown. This ensures that the data in the user interface is
not stale and is kept in synchronisation with the server data.

—Find Staff

Name:| ¥ Grade: | ¥ Employment Type: Contractor (O Permanent)

MName Date Joined - Waork Phone Email Employment Type Grade

Omer Dawelbeit 28 Jan, 2008 01189582777 omer.dawelbeit@gmail.com Permanent Senior Consultant
Amna Shibeika 29 Jan, 2008 011897223222 amna.shibeika@gmail.com Permanent Consultant
Julie Eldridge 25 Feb, 2008 02476232322 julie.eldridge@gmail.com Contractor Consultant
Thomas Evans 28 Feb, 2006 02476974598 richard@hotmail.com Permanent Consultant
Mark Smith 10 Nov, 1999 07983434343 mark.smith@gmail.com Permanent Consultant

<Q

Figure 56. Find staff window.

7.3.3 User interface controller

The controller for the user interface was developed using the approach
developed in subsection (6.4.2). The controller contains the code required to
invoke AJAX call and their call-back function, this approach provide a central

116

location to parse the server’s response, check for errors and notify the user and
Ul widgets that an error has occurred. Figure 57 below shows the class diagram
for the client side controller implemented in JavaScript and used the dojo.Declare
notation. The controller was implemented in the “/OfficeMA/WebContent/scripts/
officema_controller.js” JavaScript file.

==gontral==
com.officema.Controller

+initializer{urls : Chject) : void

+ runimanagediidgets | Chject) ; void

+ connectIComponents(woid

+ populateWorkStreamsitype ; Ohject, data : Object, evt : Ohject) ; woid

+ getUrlimodule : String) : void

+ gefTitlesUrld - vaid

+ showErrarimessage : String) : vaid

+ showlnfo(message : String) : waid

+ showQuerymessage : String) : vaid

+ showharni{message : String) : void

+ showlLoading :vaid

+ hideLoadingd : vaid

+_genericAjaxHandlerdype : Object, data : Ohject, evt: Object) - void

+_genericAjaxLoadHandlerlype : Object, data : Object, evt: Ohject) : vaoid

+ _genericAjaxErrorHandlertype : Object, data : Ohject, ewt . Ohject) : woid

+ postParamDatalmoadule : String, parameters : Ohject, loadFunction : Function, errorFunction : Function) : waid
+ postFormDataimodule : String, form : DOMRode, loadFunction : Function, errorFunction : Function) : waid
+ getCataimodule : String, parameters - Object, loadFunction : Function, errarFunction : Function) : woid
+ checkResponse{data : Object, evt : Object, showSuccesshessage : Boolean) : woid

+ addStafficontentWindow : Chject) : void

+ addStafiError{type : Object, data : Chject, evt: Chject) : void

+ addStaffLoad(type . Object, data : Object, evt: Object) : void

+ editStaffLoad{type : Object, data : Chject, evt: Chject) : vaid

+ querddllStaff() waid

+ quergdliStaffErrortype | Object, data . Ohject, ewt : Object) : woid

+ queryAllStafiloaditype ; Object, data : Object, evt: Ohject) ; void

+ showStaffDetailzitype | Ohject, data © Ohject, evt: Object) ; void

+ queryStaffistafid | Number) ; void

+ logout(; void

+ exithpplication(type ; Object, data ; Object, evt: Ohject) ; void

Figure 57. Class diagram for the client side JavaScript controller

7.3.4 User interface modelling

For each of the prototypes developed during the analysis class diagrams
(Appendix D), the boundary classes and interaction diagrams were developed to
show the overall interaction between the user and the application. This approach
of modelling the client side classes alongside the server side classes is only
made possible by the fact that the user interface used for the application is object
oriented. Such great modelling flexibility would not be possible when modelling
conventional Web applications that use normal HTML pages for display.

117

Staff management boundary classes

Boundary class diagrams for the staff management VSO were developed as
shown in Figure 58 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

» /OfficeMA/WebContent/officemaWidgets/widget/templates/addStaff.css

+ /OfficeMA/WebContent/officemaWidgets/widget/templates/addStaff.html

« /OfficeMA/WebContent/officemaWidgets/widget/templates/findStaff.css

» /OfficeMA/WebContent/officemaWidgets/widget/templates/findStaff.html

« /OfficeMA/WebContent/officemaWidgets/widget/templates/ModalAlert.css
« /OfficeMA/WebContent/officemaWidgets/widget/templates/ModalAlert.html
« /OfficeMA/WebContent/officemaWidgets/widget/templates/viewStaff.css

« /OfficeMA/WebContent/officemaWidgets/widget/templates/viewStaff.html
» /OfficeMA/WebContent/officemaWidgets/widget/addStaff.js

« /OfficeMA/WebContent/officemaWidgets/widget/CustomFloatingPane.js

« /OfficeMA/WebContent/officemaWidgets/widget/editStaff.js

« /OfficeMA/WebContent/officemaWidgets/widget/findStaff.js

« /OfficeMA/WebContent/officemaWidgets/widget/ModalAlert.js

+ /OfficeMA/WebContent/officemaWidgets/widget/viewStaff.js

<<widgets
Htmiwidget

N

+ show(:void
+ ternplatePath * String

d
it
<<boundary=
ZT Addstaft
+templatePath : String
> +templateCs ing
~fitles U]
countiesUH © String
+terplateCssPath - String

+ widgetsinTermplate : hoolean = true
checks v

ject, currentUser - Objech *void
Narne : String, fleldvalue * String, index : inf) : vaid

+ submit) - voidl

Siring) - void

IIF
+ papulate Restricted Detalls (stafiMember : Object, currentUser : Oblect, allDisabled : Boolean) - void
+ onShaw) : void
:::::: 10 vaid

Figure 58. Boundary class diagram for staff management VSOs

118

Staff management Ul interaction diagrams

The sequence diagrams below show the interaction between the user, the View
Support Obijects, the controller and the server. The messages between the client
and the server are shown in the sequence diagram by using Asynchronous AJAX
messages.

O }—O . QueryStafiAction

1 Administrator : FindStaff : com.officema.Controller : EditStaft staftService . StaffManagemertService
T - 1
| 1: showSelected?) o | |
I
| |
| | 1442 Creategessage() Q
! 1143 ShDWStaffli)etails() : Staffiembertitapper
1
H |
|

2 zetForCthersDetails) | vol

3 populgtedlDetailz(staftMember: Object) : woid

i

-
& walidatel) : vaid

add staff sd

| |
11 Staff !
| GueryStar (b 11.4: queryh | 1.1.1.1: findStatiember()
|
I
|
|
|
|
|
|
|
|
|
|
|
f

|
|
|
.
zzcreatess r|_|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

h J
T e

Figure 59. Edit staff details sequence diagram

% O |-O GQuenStafiAction O
- Btart FindStaft cor officeria Contraller VigwStat . Editdtatt w'ﬂﬂw
I T T

L 1ishowSelectedd o | | | |
1.1: queryStafi()
4’@ | 111 query(| String
I
|

|
11.11 ﬂndatamemher(staﬂ'\d'\meger,quewingstafﬂd'lbtegen'Staﬂ'Memher
|
|

o

==rreate=>
.20 CreateMessage

|
|
T
|
|
1.1.1.3: showStpfiDetails(type Object, data:Objec, evt Object) : void
1
|
|
|
|

T

L 5 cancel() : void e !
H 'U

|

Figure 60. View staff details sequence diagram

[Ha StafiMembertirapper }
alt !

@ pnpuIateDeta\Is%ﬁkaﬁMemher'Ohiect, cutzetlserObject) < vaid |
ld I
[others details] 21 _deleteTableRows () - void T : |

|
! ' ‘
| |
22 _createTahleRo lame:String, fieldvalue:String, iq\dex int) : woid } | |
. [| [}

f |

lelse] U | } | ‘
3: seif oiDetails(- void ol | | }
4. populateR: Oquecl‘ currentlUser Object, a\IDu;LJLd Boolean) : void | : |

j |
! ' ‘
! ' }

|

! |
I I

| gl
|
|

119

:UpdateStaffaction

staffService : StafianagementService
T

£ String, creatingl

JAdministratar Add Staff com.ofiicema.Controller
e B

| V:validated voidy | | : |
’ | |
1.1: chegkHouseblumMamed) vaid | | |

|
| |

|
| , !
alt tvalic = false] I | !
2 flagnvaliddtabint, feld:String, customMessaoe:Strih) : void | :
| | |
! ! |
[else] 113 submit() :void | | :
f | | i
|
1.4 ag taﬁ(content‘v’\findow:Obi*t}Lvoid | |
1.4.1: showlLoading() :vm%ﬂ :
' |
' |
1.4.2: createq ; String | |
I |
1.4.2.1: getStafemberd : Staffdember |
|
_é |

1.421.1: createB-aﬁMember(staﬁMember:Stafﬂ11. ber, roleType:RaleType, workStreamslds: Set=Integer=, ggadeCod
1.4.2.2; addStafLpaditype:Object, data:Object, pfBhtect woid — — — — —
1.4.2[211: hideLoading : void
1.4.2.2.2 cancel{ : vaid F
________ T
T T
T
Figure 61. Add staff details sequence diagram
|-O - QueryStafietion
. Staff . FindStaff com.officema. Contraller
1showd) swvoid

1 A gqueryAll Staffd ZVDH |

2.3 queryAliStat

2o query®If : String

1.1.1: 4o uliteStaﬁTab\e(data:O ligct) : woid

==

ditype:Object, data:Ohjecl,

2111

stafiService - StafanagernentSenice

Loop |ﬁ li=

01o stafember.size)]

=<rtegte==

2.2: CreateMessage()

StafiDetails

viObject)

woid

Figure 62. Find staff sequence diagram

b

|

|

|

|
dAllStafiMembers{queryingRole:Role) : List<Staﬁquber>

120

Expenses management boundary classes

Boundary class diagrams for the expenses management VSO were developed
as shown in Figure 63 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

« /OfficeMA/WebContent/officemaWidgets/widget/templates/
EditExpenses.css

» /OfficeMA/WebContent/officemaWidgets/widget/templates/
EditExpenses.html

« /OfficeMA/WebContent/officemaWidgets/widget/templates/
ExpensesDetails.css

« /OfficeMA/WebContent/officemaWidgets/widget/templates/
ExpensesDetails.html

« /OfficeMA/WebContent/officemaWidgets/widget/templates/
ViewExpenses.css

» /OfficeMA/WebContent/officemaWidgets/widget/templates/
ViewExpenses.html

» /OfficeMA/WebContent/officemaWidgets/widget/EditExpenses.js

» /OfficeMA/WebContent/officemaWidgets/widget/ExpensesDetails.js

» /OfficeMA/WebContent/officemaWidgets/widget/ExpensesltemRow.js

+ /OfficeMA/WebContent/officemaWidgets/widget/ViewExpenses.js

« /OfficeMA/WebContent/officemaWidgets/widget/Map.js

121

<<DOM==
td

+ cellindex: int
+innerHTML : String

[

=<DOM=>
tr

+ rowdndes [int
+cells : Array

+ deleteCell(index : inf) : void
+insercell{ndex : int) : void

1

A

references

==houndary=>
ExpensesitemRow

+ parentTable : table

+ rowiNum < int

+ nedRowld int= 0

+ DatePicker - HtmMVidoet

:
+ expenses TypeSelect : HimMWidget
+expensesDescTexd : DOMNDdE

+ expensesAmountTed : HirmWidget

+ e¥penseshiileageTes : Himiwidget

+ expensesDatelnput: DOMMode
+expensesDateText | DOMMode

+ expensesMnemonicinput : DOMMNode
+ expenseshinemanicTex | DOMMode
+ expensesTypelnput | DOMNode
+expensesTypeTexd | DOMMode
+expensesDescriptioninput : DOMMode
+ eypensesDescriptionText | DOMNOde
+ expensesAmountinput | DOMMNode

+ expensesAmountTexd! : DOMMNode

+ expenseshilesinput: DOMNOde

+ expenseshilesText - DOMMode

+init(parentTable :table, expensesttern Expensesitern)
+ createBlankHtmIRow(: void

+ deleteHimIRow(void

+ updateHtmIRow(: vaid

+ showEditModeq) :void

+ getRowlndex(© int

+ createPopulatedHimIRow() : woid
+ deleteRow) : void

+ stripeHtmIRow(void

+ getAmount() : loat

+ gethliles() : foat

+validate(: String

+ saveRow() void

+ editRow() : void

+ _clearEdifTools(: void

+ _createHtmIR o void

A contains

2<DOM==
DOMNode

Map

+ keys | Object
+values Array

+initQ)

+ puttkey : String, value | Ohject) : vaid
+ getikey : String) | Object

+ removeikey | String) © void

+ lengthd :int

+ sort{sortFunction : Function) : woid

<awitget>
HtmMWidget

+ show() void
+ hideq) : vaid
+closed) void
+ minimized void
+ maximize(: void

referen
==entity=»
Expensesitem

. fisists of

+id int

1 +expenseDate : Date

+ mnemaonic : String

+ description : String
+amount : float

+miles : float

+ rejected : Boolean

+ rejectionReason : String

+ categoryDescription | String
+ categoryld :int

<2widget==
Button

+ setDisabled{disabled : Boolean) @ void

==houndary==
EditExpenses

+form : DOMMode

+ ExpensesTypes : Array

+ Mnemonics : Array

+ allowedExpensesPeriods : Aray
+ dirty boolean

+ editedRaw - int

+cancel(void

+ savel) woid

+ submit]) ; woid

+ getTotalAmount)) : float

+ getTotalMiles(: Anat

+ populateRowF ordnemonicrowMum | int, mMemaonic : String) : void
+ populateExpenses(data | Obiect) void
+isDiry() - boolean

+ updateStatus(| void

+ deleteSelectedd) : void

+ show(expensesid :inf) woid

+ changePeriod() : void

+ getSavedStatus) (void

+ sethewStatus() < void

+ setRejectedStatus() : vaid
+addTableRow(- int

+ deleteTableRow(rowhium © inth: void
+ saveTableRow(rowMurn @ inf) : void

+ edifTableRowiowhium @it : void
+validateTableRow(rowMum :inf) : void
+ updateTotals) void

refergnces
Ty

<antitys>
Expenses

+id tint

+year . int

+ manth :int

+week:int

+stafild : int

+ statusLastodified ' Date
+datePaid : Date

+ status : Blring

Figure 63. Boundary class diagram for expenses management VSOs

Expenses management Ul interaction diagram

The sequence diagrams below show the interaction between the user, the user
interface and the View Support Objects to create a new expenses item.

122

W ET

==yyitgets=
addhewR ow : Button

Figure 64. Add new expenses item sequence diagram

: Sltafr : EditExlpenses
I
| 1: addTableRowi) : int | [|
==create=» |
1]1: iniiparentTablettable, expensesitem Expensesitem) | ‘
: ExpensesternRow | }
1.1.1: createBlankHtmIRowd vu:id |
| \
| [
~1.2: stripeHtmIRow() :void | }
|
| \
| ‘
| ‘
e | |
1.2 pultikey String, value:objecy : boig ol }
I
e e jT‘ \
1.3 setDisab\e‘ld(true) swaid | = ‘
| 1]
R e P ‘
T T | | |
| 2 saveRowd - vaid X | |
i 21 message = validated Strihg |
|
: | |
opt | [message="1 1.1 updateHtmIRow) : void : |
| I | |
| 2.2: saveTahleRowirawNum:ing : vaid | |
\
2.2.1: setDisabled(false) : vaid B : |
.
| "]
K — H-—— o
| ‘
_________________________________ | ‘
< + T | ‘
T f f I f
| | 3 deleteRowp : void | | ‘
: B} deleteHtmiRowd) : void | ‘
| | |
| g 3.2 deleteTahleRow{rowuming : void | |
]
\
3.2.1: removeirowNum) | vai Ll |
o I 1] |
| \
3.2 2 values = getvalues) ﬁj |
\
Ko mmmmmmmm o - | |
loop : fori= 0 to yalues length [Guard]) | }
|
3.2.3: stripeHtmIRow) : void | }
|
K—— H | !
T |
|
|
|
S Fr T
L

123

Task management boundary classes

Boundary class diagrams for the task management VSO were developed as
shown in Figure 65 and implemented using the source files below. The VSO
source comprises a JavaScript file, a HTML file for the template, a CSS file and
any image files if any:

« /OfficeMA/WebContent/officemaWidgets/widget/templates/manageTasks.c
SS

» /OfficeMA/WebContent/officemaWidgets/widget/templates/
manageTasks.html

« /OfficeMA/WebContent/officemaWidgets/widget/ manageTasks.js

==idgets=
HtmMWidget

+ showwd) - woid
+ hide{ ;vaid
+ clased : vaoid
+ minimize :void

+ maximized ;void ‘;\
/J ==houndan==

==widget== ManageTasks
Button

+templatePath ; String
+templateCssPath : String
+widgetsinTemplate ; boolean = true
+izContainer : boolean = true

==00M== én;_/’_’—ﬁ—f' + onshow) ; void

DOMModle o has + refreshAll] ; vaid

+ setCompleted) : void

+ populateTasksTable{data : Object) : void

+ enahleTaskButtonsd : woid
+ deleteTaskd : void

+ setDisahledidisahled : Boaolean) : void

Figure 65. Boundary class diagram for task management VSOs

Task management Ul interaction diagrams

The sequence diagrams below show the interaction between the user, the View
Support Objects, the controller and the server. The messages between the client
and the server are shown in the sequence diagram by using Asynchronous AJAX
messages.

124

Client Side 5

Server Side ﬁ

| : TaskManagementAction |

taskSerdce | TaskManagementService

taskService : TaskManagementService

Staff WanageTasks s corn.ofiicerna.Controlle T |
! 1: show ! | } |
1.1; queryAiTasks) o | | :
B: quengslly [
[2.1:tasksList = findAll{staffid:int, quervingstaffStame+ber:int) cList
.
loop i+ 0 to tasksList sizen] [Guard]) I
==rreatass |
2.2 CreateMessage() |
——————————— |
TaskWrapper |
] |
!
| |
|
2.3 quipryAITasks Load) | |
| |
14 populateTasksTahlgn) | :
\ : |
‘ |
T | | |
l | ! I
K—————— L | | |
\ h
|
Figure 66. View Tasks sequence diagram
: TaskManagementAction
.Sltaff ManagleTasKs :com.officemna. Controller T
1: deleteTask] :vo |
I 0oy | | :
| updateTaskiString ac 'oh | |
T 2 update) |
2.1 removedidint, quenyingStaft: Staffember) Tasl-(.._I
<77777777777_ 77777777
2.2 tasksList = findAll) |
e ——— - - - -
loop | [|= 0 1o tasksList.size()] [Guard]) |
==create== |
2.3: CreateMessaged |
TaskWrapper :
|
| |
2.4 quersAliTasksLoad(| |
| |
A populateTasksTahlg(: |
|
| |
|
| |
l | | I
| | |
- ———— = L | | |
| ' |
|

Figure 67. Delete/Update Task sequence diagram

125

7.4 Database Design and Implementation

7.4.1 Establishing requirements

The initial requirements for the database logical model were derived from the
various class models, initially the analysis classes and then the detailed classes.
Entities were derived from the classes with stereotype “entity” in the class
diagram. Association between classes are also translated into relationship
between entities.

7.4.2 Data Analysis

Entity types and relationships

By analysing the analysis class diagram the classes below were identified as
candidate entities for the initial Entity-Relations model:

StaffMember, BankAccount, EmploymentDetails, User, Role, Address, Task,
Grade, WorkStream, Project, Expenses, Expensesltem,
ExpnesesCategory,MileageCost, ExpensesMnemonic, HolidayYear, Holiday

By further analysing the candidate entities above, it is clear that they can be
classified as strong or weak entity types. Strong entities are not existence-
dependent on some other entity, whilst weak entities are existence-dependent on
some other entity [8].
Strong Entities (parent)

« StaffMember

« Grade

WorkStream

» ExpensesCategory

 User

+ EmploymentDetails

* Role

Weak Entities (child)
» BankAccount — dependent on StaffMember

* Address — dependent on StaffMember

126

» Task — dependent on StaffMember

* Project — dependent on WorkStream

* Expenses — dependent on StaffMember

» Expensesltem — dependent on Expenses

» MileageCost — dependent on ExpensesCategory
* ExpensesMnemonic — dependent on User

» HolidayYear — dependent on StaffMember

» Holiday — dependent on HolidayYear

» ViewableStaffDetail — dependent on Role

* UpdateableStaffDetails — dependant on Role

» ViewableExpensesStatuses — dependant on Role

It was decided to model some of the candidate entities above as entity types for
many reasons, one of which is the multi-valued attributes such as the
MileageCost. This is done to fulfil the business requirement that mileage should
be paid depending on how many miles the employee has claimed. For example
40pence per mile for less that 10,000 miles and 25pence there after, hence
MileageCost was modelled as a separate entity. Other entities include Address
and BankAccount which belong to StaffMember, but have been modelled as
separate entities to avoid a large StaffMember entity with many attributes.
EmploymentDetails was modelled as a strong entity as it represents the
employment details of the staff member, such as salary, holiday entitlement,
etc...

After completing the data analysis and composing an initial list of entity types and
relationships, the identifiers for these entities were decided. Some of the entities
have natural identifiers that are used by the business, such as employee id,
username, and grade codes. However, for most of the entity types surrogate keys
were used as primary keys and natural identifiers as candidate keys. The
rationale behind this is to avoid using multi-attribute primary keys or natural keys
that might change in the future. Bauer and King [2] have recommend the use of
surrogate to ensure that the primary key is unique, constant, always required,
and never null or unknown, which is sometimes hard to achieve using natural
keys.

Entity subtypes

Inheritance from the UML classes was modelled using entity subtypes
(generalization) in the E-R model. An example is the subclasses of the Role class

127

implemented in the details class model such as Accountant, RegularStaff and
Administrator, these are specialized roles that inherit from Role (Figure 68).

One to one and one to many relationships

One to one relationships were modelled by first deciding on which side will have
an attribute that will be declared as a foreign key, the same attribute was then
declared as an alternate key in the other relation to ensure a one multiplicity
instead of many. One to many follows the same approach, but the foreign key is
not declared as unique to allow for multiplicity.

Many to many Relationships

Many to many relationship in the E-R model, also called intersection relations can
not be represented using the primary key / foreign key mechanism so these were
resolved using a dependant entity between the two entities participating in the
m:n relationship, hence resulting in three entities participating in two 1:n
relationships.

Constraints
Constraints are represented in the E-R models in two ways:

» as a property of a modelling construct

» as a description in the Constraints part of a model

The constraints that were expressed in the conceptual data model are
« Each identifier has a unique value such as staff id

* An entity type participates in a relationship such that an occurrence of the
entity type only participates once (at most) for example one to one
relationship with optional participation.

* An entity type may be shown to participate in a relationship such that each
occurrence of the entity type must participate at least once for example one to
one or one to many mandatory participation.

7.4.3 Entity Relationship Model

Below is the Entity Relations model (Figure 68) developed using the convention
summarised in Table 4. The model comprises an ER diagram, entity types and
constraints.

128

Task .
has line manpger Holiday™ear S
has has
[~

1 EmploymentWorkStream[y
perform wark - -
Halic
=

5l
HomeAddress
has ek

lives at () ()
BankAccount StaffMember 'S -1 Expenses i] Expensesitem y

hanks with books consist of

OO0
logs online as approves expenses for

Rale

Administrator

Accourtarnt O
O

RegularSstaff

Vigw ExXpenses in

[\fiewableExpensesStatuseﬂ

]

as role

view staff details in

UpdateableStaffDetails

appro dliday for

~] WiewableStaffDetails

warks far

O

) ExpensesCategory
booked again
O

stoped far

B,

User | ExpensesMnemonic
enterad -

ha i
MileageZost

Figure 68. The Office Management Application preliminary E-R diagram

129

Entity Types:
StaffMember (Staffld, DateOfBirth, EmailAddress, FirstName, LastName,
Gender, HomeTelNo, WorkTelNo, NINumber, TaxCode, Title,)

User (UserName, CanApproveExpenses, CanApproveHolidays, Locked,
Password, PersonalPhoto, UnSuccessfulLoginAttempts)

Role (Roleld, RoleType)

ViewableStaffDetails (Roleld, FieldName)
UpdateableStaffDetails (Roleld, FieldName)
ViewableExpesesStatuses (Roleld, StatusName)

ExpensesMnemonics (Name, Amount, Mileage)
BankAccount (Staffld, AccountNumber, sortCode, BankName)

HomeAddress (Staffld, AddressLine1, AddressLine2, Country, County,
HouseNumber, HouseName, Locality, PostCode, Town)

Task (ld, Completed, DateCreated, Description, TaskType, Title)

EmploymentDetails (Id, DateJoined, DateLeft, EmploymentType,
HolidayEntitlement, Salary)

Grade (ld, Code, MaximumSalary, MinimumSalary, Name)
EmploymentWorkStream (EmploymentDetailsld, WorkStreamld)
WorkStream (Id, Description, Name)

Project (Id, Code, Description, Name)

HolidayYear (Id, CarryOver, DayslnLieu, Entittement, HolidayYear)
Holiday (Id, AfterNoon, BookedDate, FromYear, FullDay, Status)

Expenses (Id, DatePaid, StatusLastModified, Status, ExpensesMonth,
ExpensesWeek, ExpensesYear)

Expensesltem (Id, Amount, Description, ExpenseDate, Miles, Mnemonic,
Rejected, RejectionReason)

ExpensesCategory (ld, Category, HasMileage)
MileageCost (1d, Cost, LowerLimit, UpperLimit)

Constraints

» Each StaffMember participate with the HolidayYear only once for each

value HolidayYear attribute

« Each StaffMember participate with the Expenses entity only once for each

value of ExpensesMonth, ExpensesWeek and ExpensesYear.

130

* Only one Holiday should be booked by any employee for the same day
» Either house name or house number or both should be supplied.

* ExpensesMnemonic must have an amount or mileage or both

7.4.4 Normalisation

As the database design for this project followed a top-down approach through ER
modelling, normalisation was used as a validation technique to check the
structure of relations and ensure that each of these relations were well designed
and meet the data requirements as outlined by Connolly and Begg [8]. All the
relations above were checked and found to be in the Boyce-Codd Normal Form
(BCNF) as explained below:

» 1NF - all the relations above are in this form because all the non-primary
key attributes are functionality dependent on the primary key.

* 2NF - any relation with a single attribute primary key must be in at least
2NF, which applied to all the relations above.

» 3NF - there are no transitive dependencies and hence all relations above
are in 3NF.

» BCNF - all the relations above are in this form as it's safe to assume that
relations in 3NF are also in BCNF if these relations have [23]:

1. only one candidate key (no alternate keys);
or, if there is more than one candidate key, then

2. the candidate keys are not combinations of attributes;
or, if the candidate keys are combinations of attributes, then

3. the candidate keys do no overlap.

Below are the functional dependencies for each of the relations above. Relations
created to resolve m:n relationships and multi-value attributes have been omitted:

131

StaffMember

Primary key FDs

Staffld -~ DateOfBirth, EmailAddress, FirstName, LastName, Gender,
HomeTelNo, WorkTelNo, NINumber, TaxCode, Title

Candidate key FDs

NINumber — DateOfBirth, EmailAddress, FirstName, LastName, Gender,
HomeTelNo, WorkTelNo, Staffld, TaxCode, Title

User
UserName - CanApproveExpenses, CanApproveHolidays, Locked, Password,
PersonalPhoto, UnSuccessfulLoginAttempts

Role
Primary key FDs
Roleld - RoleType

Candidate key FDs
RoleType — Roleld

ExpensesMnemonics
Name - Amount, Mileage

BankAccount
Staffld -~ AccountNumber, sortCode, BankName

HomeAddress

Staffld — AddressLine1, AddressLine2, Country, County, HouseNumber,
HouseName, Locality, PostCode, Town

(Although real addresses are dependent on the postcode as well, we are not

modelling addresses in this project as there is no facility to validate addresses,

and they simply considered an attribute of the staff members, for example if two

members of staff live at the same address the address will be stored in the

database twice, one for each staff member. To model the address as a foreign

key in the staff member relation requires the use of the full postal code database

which is not feasible for this project)

Task
Id — Completed, DateCreated, Description, TaskType, Title

EmploymentDetails
Id - Datedoined, DateLeft, EmploymentType, HolidayEntitlement, Salary

Grade

Primary key FDs

Id — Code, MaximumSalary, MinimumSalary, Name
Candidate key FDs

132

Code - Id, MaximumSalary, MinimumSalary, Name
Name - Id, MaximumSalary, MinimumSalary, Code

WorkStream
Primary key FDs
Id - Description, Name

Candidate key FDs
Name - Description, Name, Id

Project

Primary key FDs

Id —» Code, Description, Name
Candidate key FDs

Code - Id, Description, Name
Name - Code, Description, Id

HolidayYear

Id - CarryOver, DayslnLieu, Entitlement, HolidayYear

Holiday

Id - AfterNoon, BookedDate, FromYear, FullDay, Status

Expenses

Id —» DatePaid, StatusLastModified, Status, ExpensesMonth, ExpensesWeek,

ExpensesYear
Expensesitem

Id -~ Amount, Description, ExpenseDate, Miles, Mnemonic, Rejected,

RejectionReason

ExpensesCategory
Primary key FDs
Id - Category, HasMileage

Candidate key FDs
Category - Id, HasMileage

MileageCost
Id - Cost, LowerLimit, UpperLimit

133

7.4.5 Relational Database Model

The logical database design was carried out using relational modelling. This is a
representation of all the relations and constraint independent of any physical
implementation. A number of domain definitions were used in the relational model
mainly to define custom data for enumerations such as genders, titles, and the
various status types for holidays and expenses. This is similar to the use of Java
Enum for the classes representing these database entities.

Entity subtypes were mapped using a single table per class hierarchy. For
example for the Role entity and its subtypes RegularStaff, Accountant and
Administrator, a Role relation was used with a discriminator column “RoleType”.
RoleType itself was declared as an alternate key to enforce the fact that only one
row should exist for each subtype. The relational database model for application
is included in Appendix E.

7.4.6 Physical Database Model

The physical database (Appendix F) model was implemented using PostgreSQL
relational DBMS for its support to a large part of the SQL standards such as
integrity constraints and domain definitions. This model was designed by the
translation of the logical data model to suit the PostgreSQL DBMS. The steps
followed during the physical database design can be summarised as follows [8]:

» Design base relations
» Design general constraints
* Analyse transactions

« Choose indexes.

Design base relations

For each of the relations in the logical model a table was implemented using the
SQL CREATE TABLE statements. Some of the table were named differently as
the relation name corresponded to a reserved SQL keyword such as relation
Role, for which the tables was named Roles. Other relations such as
ViewableStaffDetails, UpdateableStaffDetails and ViewableStaffDetail were
created as role_view_staff details, role_update_staff details and
role_allowed_expenses_statuses respectively to indicate that these are child
tables of the roles table. Mandatory table columns were declared as NOT NULL.
The data types used are described in Table 21 below alongside their Java
counter arts.

134

Table 21 — Data types for the various models

Java type Relational model type Physical model type
String string VARCHAR(255)
Decimal decimal NUMERIC(19, 2)
Integer integer INTEGER

boolean boolean BOOL

Date (date only without date DATE

time)

Date (with time) timestamp TIMESTAMP

Enum

Domain definition

Domain definition with

check constraint

A database sequence named the hibernate sequence was created to support
the automatic generation of surrogate primary keys. The Hibernate ORM uses
this sequence to increment the primary key columns annotated in the Java code
as using the @ld @GeneratedValue annotation.

Designing general constraints

A number of constraints were implemented such as primary keys, foreign key,
unique and check constraints. All the constraints from the logical model were
translated into SQL statements except the constraint that indicate the mandatory
participation on both sides of the relation. These constraints were shown in ER
and logical model to indicate that all the records in both tables should participate
with each other. The problem with this type of constraints arises when inserting
new rows in both tables, the constraint will be violated each time a new row is
inserted. This is because a row entry can not be inserted simultaneously in the
two tables. It has to be inserted in one table then the other table which will violate
the constraint in this case.

These mandatory participation constraints were included in the logical model to
indicate that this is how the data should be stored. For example there must not
be a record in StaffMember that does not have a HomeAddress or BankAccount.
But, it is not possible to enforce this using a Check constraint. This can be
achieved using a stored procedure to insert records on a number of tables at
once. This stored procedure can then be exposed to clients to use to insert data
into the database. In our case the ORM layer manages this by inserting data into
a number of tables as one transaction as explained below.

135

Analyse transactions

To analyse the database transactions we consider the repository classes
discussed in subsection (7.1.1). The following tables have a repository defined in
the Java code and hence are loaded and updated as parent tables:

o Staff Member

* Roles

e WorkStream

 Grade
 Expenses
 Task

* Holiday_Year

* Expenses_Category.

The ORM layer will load these tables and their child tables using join statements,
and understanding these transactions helps in implementing indexes to improve
performance. Appendix G shows sample queries used by the ORM layer to load
an instance of StaffMember, these join transactions for StaffMember class are
summarised below in the format “Main table - Joined tables” (Joined tables will
also join with their child tables):

Staff_ Member -~ Home_ Adress, Bank_Account

Employement_Details — Grade, Employment_WorkStream, WorkStream,
Project, Staff_Member (for line manager object)

Users - Role, Expenses_Mnemonics, Staff Member (for expenses approver),
Staff_Member (for holiday approver)

Choosing indexes

The PostgreSQL DBMS supports a number of index types, one of which is the B-
tree index created by default for primary key and unique constraints (alternate
keys). The B-tree index is sufficient for the performance required by the
application as most queries are simple queries selecting from tables by primary
or alternate keys.

136

7.5 Caching, Pooling and Transactions Support

7.5.1 Caching

To improve the performance of the web application data caching was used. The
data caching was implemented using EHCache [44], a general purpose caching
framework. The cache used for the application is a simple in memory cache that
only expires when an object is updated. The cache was defined on the methods
in the repository classes that retrieve the objects. Whenever an object is
requested it is checked in the cache first using its object id and if it is not found it
will then be loaded from the database and cached. For this reason all the entity
classes in the application implement the Serializable Java interface to indicate
that they can be serialized to and from the cache. The cache is flushed whenever
an instance is deleted or updated. Caching is configured in the following two files:

» /OfficeMA/WebContent/WEB-INF/ehcache.xml
» /OfficeMA/WebContent/WEB-INF/applicationContext.xml

<cache name="officeMACache™
maxElemnentsInMemory="500"

eternal="trues"
overflowToDizk="fal=e"
memoryStoreEvictionPolicy="LFU" />

Figure 69. EHCache configurations

7.5.2 Connection Pooling

Connection pooling was also used to improve performance and cache a number
of database connections initially set to 5. The connection pooling saves the time
required by the application to create, establish, and then close down a
connection each time a request is made to access the database. The DBCP
connection pooling component from the Jakarta project [49] was used. The
connection pooling was managed by the Spring framework, however this can
also be implemented to be managed by the Tomcat container. Pooling is
configured in the following file:

« /OfficeMA/WebContent/WEB-INF/applicationContext.xml

137

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource” destroy-method="close">
ty name="driverClassName" wvalue="org.postgresgl.Driver" />

cy name="nrl" vaL:e="jdbc:pcstgkeaql:;;Lcca;hcstfcff;cema” F

ty name="username" wvalue="officema" />

ty name="password" walue="sayian" />

ty name="initialSize" walue="5"/>

CY name="maxictive" walue="10"/>

Figure 70. DBCP connection pooling configurations

7.5.3 Transactions

Database transactional support is by all means the most important factor in
ensuring the data integrity. The PostgreSQL database is fully ACID compliant,
however the application needs to manage the application level transactions and
decide when to commit or rollback a transaction. The OfficeMA transactional
requirement is to be able to save or persist an object graph into the database, for
example a StaffMember instance with associated objects. This operation will
update a number of tables and needs to be treated as a single transaction, and in
case any update fails the whole operation will need to be rolled back.

The Spring container was used as a transactional framework by declaring all the
repository classes as transactional using the Spring @Transactional annotation
[61]. This ensures that all the methods in the repository class are executed as
transactions that will be committed only if no exceptions such as
RuntimeException occurred.

138

7.6 Security

Security is one of the big factors affecting the decision to implement a Rich
Internet Applications. RIA have many advantages in regards to usability, flexibility,
better user interaction and experience, but this comes at a price. By developing a
RIA and following an MVC pattern on the client side a great deal of application
logic is exposed on the client side in the form of JavaScript code. Some of the
risks facing such applications and a way to mitigate this risk are discussed below.
Having said this, each RIA should be assessed in terms of requirements and if
the advantages of using a RIA outweigh the disadvantages and security risks.

Traditional web application security methods can be used to secure RIAs, but
these are not enough and RIA developers will need to take extra care when
developing such applications as Edwards [14] has summarised that:

“‘Although AJAX does not actively make security worse in web application, its
approach to software design can encourage mistakes. Developers need to pay
more attention ...”

Traditional Web Applications Scanners (WAS) that are not AJAX or JavaScript
ready, fail to traverse and detect vulnerabilities in RIA. A recent scan that was
carried out on the OfficeMA using the Acunetix [37] WAS has only managed to
scan the login page, but failed to scan the rest of the application as the URLs are
loaded using the JavaScript function window.setTimeOut(), so a new generation
of WAS that can understand JavaScript and AJAX is needed, in the meantime
the developers have to follow good programming practices to ensure these types
applications are secure.

Below is a summary of the main security issues that face the RIA, some of which
are outlined by the OWASP as being in the top 10 vulnerabilities for 2007 [57].

* Insecure Communications

» Session Hijacking

» JavaScript hijacking

» JavaScript tampering

* SQL Injection, Remote file inclusion and Cross-site scripting

For each of these security risks a solution to eliminate or minimize the risk is
discussed below.

139

7.6.1 Insecure Communications

A common solution for this type of problem is the use of encryption in the form of
SSL over HTTP or HTTPS normally used to secure traditional web applications.
This ensures that the communication channel between the client and the server
is secure. HTTPS can be implemented in Tomcat application server or by using
the Apache Web server [38] as a front-end for Tomcat (Figure 71).

This approach has many advantages such as the added advantage of using
Mod-Security [54] on Apache. Mod-Security is a well know robust and effective
web application firewall that can be used to secure the application. Another
added advantage is the ability to provide load balancing between a number of
Tomcat servers behind the Apache server hence scaling up and adding resilience
to the whole solution. Load balancing is achieved by using the new mod_proxy,
and mod_proxy_balancer [39] Apache modules which support the Tomcat AJP
protocol.

Office Management
Application hosting site

Apache web server
with mod_security
and mod_proxy

Y

Port 443 open for
HTTPS

(=77
<//°/r’</°ﬁ'

DSL/Broadband
Modem Firewalled Router Apache web CHiCab ApCIS

server farm

Client PC i

PostgreSQL
database server

Figure 71. Securing OfficeMA application with Apache Web server

140

7.6.2 Session Hijacking

This vulnerability occurs when an attacker steals the session information for a
logged in user. The session information is usually stored in a browser Cookie. In
the case of RIA this risk is amplified because the user interface runs entirely on
the client side and the only way for the server to determine if the client is
legitimate or not is the session.

An approach that can be used to make RIAs more secure is the use of a unique
token per user which will be generated when the user login and sent to the client
side JavaScript to store, the client then sends this to the server on each Ajax
transmission and the server will validate this token against the one stored in the
session to validate the legitimacy of the client [7]. An even more secure approach
is for the server to generate a token on each client’s request and sends it back to
the client. The client then sends this token back to the server upon subsequent
request. So stealing the session information alone will not be enough to retrieve
data from the server

7.6.3 JavaScript Hijacking

JavaScript Hijacking [7] is an issue that was identified with the use of the JSON
notation for transporting JavaScript in Mozilla based browsers. In this
vulnerability the hacker can trick the current user into visiting a malicious website
where the hacker overrides the constructor for the super class of all JavaScript
objects and hence be able to steal sensitive data in JSON format and sends it to
the attacker. The solution for this is use some text that will prevent the server
response from being constructed in JavaScript objects using the eval function
such as using JavaScript comments “/* */”. The application on the client side will
need to remove these comments first before executing the eval function on the
response.

7.6.4 JavaScript Tampering

By most this is the biggest security issue when using a RIA due to the fact that
JavaScript files are transferred to the client side and can be viewed using some
browser utilities (Appendix N). The hacker can investigate the JavaScript and
tries to understand the inner workings of the server or the URLs that are invoked
by the client, although the hacker has to be logged in to be able to invoke any
operations on the server. The hacker can then try to perform some action based
on this knowledge. The solution for this problem can be summarised as follows:

» The use of JavaScript obfuscation, this will make the JavaScript very hard

to read. A gained advantage of this approach is improved loading time for
the JavaScript classes as obfuscation also compresses the files. The

141

developers can work on a fully commented JavaScript code, but this code
is then obfuscated before being build into the deploy file.

* Implementing all the business logic, authorisation, authentication and
access control on the server side. Relying solely on the client side to
validate the user input or to check access roles for the user in RIA is
suicide as the hacker can tamper with the JavaScript code and tries to
carryout tasks not allowed for role currently used.

» For the hacker to be able to tamper with the JavaScript and invoke this on
the server the user need to be logged in, so in this case the server can
take an approach where none of the JavaScript code is transferred to the
client unless the user is logged in.

7.6.5 SQL Injection, Remote file inclusion and Cross-site scripting

These vulnerabilities are widely known in the traditional web applications and are
manifested in the form of injecting some parameters in the request to the server.
To encounter such threats a Web Application Firewall (WAF) such as using
Apache with Mode-Security as a front-end for Tomcat reduces such a risk by
applying negative filtering to parameters supplied by the user. For J2EE
applications an application level filter such as Stinger [56] can also be used for
application level security. Input validation on the server side is very important in
encountering these threats this validation should include type and range
checking and all the special characters should be encoded.

142

7.7 Deployment

The deployment model for the application is shown in Figure 72 below. The
application uses three nodes, the PostgreSQL database server, the Tomcat
application server and the client’'s computer and contains two artefacts the
officema.sql file which contains the data definition language used to create the
database for the application and the OfficeMA.war Web Archive file that contains
the Java classes and required libraries for the application to function. As shown
in the diagram below the OfficeMA.war artefact manifests [5] a number of
components that runs the application. The database and the application
deployment instructions are provided in the installation guide (Appendix H).

PostgreSQL Database Server8.2 ' Tomcat Servlet Container 6.0.13

==gomponent== ==grtifact=>
officema database OfficeMA.war

==grtifact==
officema.sql

Spring 2.0 Framework

% Hibemnate 3.2
L]
L OfficeMA Classes

Client PC Struts 2.0.11
Framewark
==component==

5 Web Browser

' Diojo Toolkit 0.43

Figure 72. Deployment diagram for OfficeMA

143

7.8 System Testing

Testing is an important phase in the software development lifecycle. The unit
testing carried out for the project code and outlined in subsections (6.3.6 and
7.2.7) has followed a white-box testing [70] approach that concentrated on
testing a single unit or block of the application code. This type of testing is
sufficient to ensure that a block of code behaves as it is expected, however once
all these blocks are put together to form the overall system an end to end system
testing is needed. This system testing on the other hand follows a black-box
approach and concentrates on the behaviour and the functional requirements of
the system. In this project the functional requirement are described using the
high level use cases.

In the case of Rich Internet Applications, extra testing is required to validate the
user interface and to ensure cross-browser support [29]. Testing the applications
started from the business requirements captured in the use cases. The testing
steps followed the use case to check that the application satisfied the business
requirements. The test strategy followed can be summarised in the steps below:

1. For each use case tests were carried out to validate that the application
satisfied the business requirement summarised by the use case.

2. For each carried test the results were checked to ensure they were
correct. This was done by checking the results on the user interface, the
application log files and finally the database using the tool summarised in
Appendix J.

3. For each of the bugs found an issue was raised the Google Code project
page for the application (Appendix L). The priority of the bug was set
accordingly to its severity.

4. After the test cycle was completed, the raised issues were investigated
using Java debugging and the browser tools summarised in Appendix N.
High priority bugs were fixed first. Lower priority bugs or nice to have
features were fixed if time allowed.

5. The fixed bugs were then tested individually to ensure they were fixed.
6. Anew release was then build and deployed into the test environment

7. Step 1 — 6 were repeated again until there was no bugs left or the priority
of the remaining bugs was low and they were accepted by the business.
These steps were also repeated on all the browsers supported by the
application. In the case of this project testing was done on three browsers,
Firefox, Internet Explorer and Safari.

The remaining bugs in the application delivered as part of the project are
summarised in Appendix H. These bugs were not considered critical by the client
and do not hindering the functioning of the application; hence they will be fixed in
a subsequent release.

144

8 Evaluation

The software application developed as part project was evaluated in terms of the
following:

» Satisfaction of business requirements by comparing the prototypes with
the final developed screens

» Accessibility in terms of browsers support and screen resolution.

» Usability, by taking users’ feedback on the usability rules identified in
subsection (2.6.3).

8.1 Satisfaction of business requirements

In the case of the application developed as part of this project it is clear that the
business requirements for the Staff, Tasks, Expenses and System Settings
modules implemented have satisfied the business requirements. This is obvious
from the screenshot provided in the user guide in Appendix | and the prototypes
provided in Appendix C and as a direct result of using the USDP for the design of
the application. One of the advantages of using the USDP and use case driven
modelling is the fact that the developed application can be traced back to the use
case and the business requirements.

8.2 Accessibility

When the development on the application started it was intended to support all
major browsers, however due to time constraints this was not practical. Another
accessibility issue was the screen resolution used the various staff. The project
has found that any screen resolution below 1024 X 768 will not give enough
screen space to implement the various functionality specially with the ‘Add
Expenses’ window which requires a minimum width of 1000 pixels. For this
reason it was decided that the application will only support a minimum resolution
of 1024 X 768. Given the nature of this project and the fact that the employer can
dictate which browser and screen resolution the staff should use to run the
application, it was decided to only support a minimum screen resolution of 1024
X 768, and to only support the following browsers:

» Firefox 2.0
e Internet Explorer 6 and 7
» Safari 3.0.

145

After performing a number of tests using the above browser it was discovered
that Firefox has fully supported the application and has shown high performance
compared to Internet Explorer 6. Testing on Safari also indicated that the support
for the application is quite well apart from one issue which is summarised in the
list of outstanding issues in Appendix |. Testing carried on Internet Explorer on
the other hand has revealed that this browser was the one with the least
performance when running the application compared to the other two browsers.

Many issues have been encountered when running the application using Internet
Explorer and these are summarised in Appendix |. If these issues are considered
to be serious and time consuming to fix, the support for Internet Explorer can be
dropped so that future development of the application can only focus on Firefox
and Safari browsers. The project has decided to drop support for the Opera
browser due to the time constraints and the numerous issues that were
encountered when trying to run the application.

8.3 Usability

The author has interviewed a number of staff after they have used the system for
the first time. Users’ feedback was then categorised in terms of the usability rules
identified in subsection (2.6.3).

8.3.1 Visibility, Affordance and Consistency

Most of the users interviewed have highlighted the fact that the look and feel of
the application has automatically conveyed to them the way it should be used.
The menu and tool bars were an obvious way of invoking the various functionality
of the application. Most users also found the use of the tool-tip on the menu bar
very helpful in identifying the purpose of the tool buttons. Users also found that
the ability to view a number of windows at the same time very helpful in regards
to productivity and multitasking and many were pleased that they do not have to
navigate away from one window in order to view another.

Almost all users interviewed did not believe that the application was a Web
application, and most of them thought of it as being a desktop application similar
to Word and Excel. A few users have suggested the ability to configure the
shortcut button on the toolbar so that these con be configure per user rather that
be a fixed list.

146

8.3.2 Closure, Tolerance and Feedback

All the users interviewed have indicated their satisfaction with the way the
window and the dialogue boxes function in the application. Users have indicated
that the instant feedback on invalid data and expected format when filling forms
have enabled them to effectively use the application without unnecessary
frustration. The users also indicated that the feedback provided by the application
is the form of a loading image or a dialogue box was clear and successfully
conveyed to them the current status of the system, which made the users feel in
control.

8.3.3 Performance and Data Refresh

Users interviewed were impressed and pleased with the performance of the
application. This has enabled the users to efficiently use the application to
complete their tasks, submit their expenses or update their details. Many users
found that the ability to be able to check their details, others details and manage
their expenses efficiently over the Internet very helpful especially in an office with
a number of staff who work remotely. However, some users have indicated that
as they open a large number of applications on their computer the performance
of their browser became sluggish when running the application.

8.4 Evaluation Summary

It clear from the application evaluation performed that the application has
successfully satisfied its requirements and objectives. The user interface
developed has enhanced the users’ productivity and experience compared to a
static Web application using conventional Web pages for display. Having said
this, the application was developed within a constraint environment such as
limited browsers support and minimum resolution, the performance of the
application is also subject to the performance of the browser and the computer
running the user interface. These constraints are the price of utilising some of the
desktop clients’ features in the Web application as now it will also be constraint
with some of the constraints that affects traditional desktop applications.
However, in a controlled environment such as workplace the minimum application
requirements can easily be met.

147

9 Conclusions

The proposal of this project has stared from the requirements to develop a Web
application that can be used to track and manage the expenses for the staff in a
small office. However, the author decided to design and implement a full Office
Management Application that can be used by small businesses to manage their
staff. As part of this dissertation the author has conducted a survey of small
businesses to determine the current processes in place used to manage their
staff, expenses, holidays and timesheets. The survey has found out that most of
these businesses rely on manual processes based on spreadsheet or paper
forms. The main reason behind using such methods was the cost involved in
trying to purchase and install one of the established software products (Table 3).
The project has successfully satisfied the objectives set as follows:

» The project has successfully investigated the possibility of applying the
USDP boundary classes methodology used to design traditional desktop
application in designing and modelling Rich Internet Application user
interface. And has Devised a methodology and applied it to the design and
implementation of the OfficeMA user interface

« The project has successfully gathered and analysed the business
requirements for the Office Management Application using the USDP and
provided the analysis and detailed design UML models in subsections 5.3
and 5.4 and Appendices B and D.

 The project has successfully identified the data requirements for the
application and used the relational database design theory to provide the
Entity-Relations, relational and physical database models for the
application as outlined in subsection 7.4 and Appendices E and F.

« The project has successfully implemented, tested and evaluated the
application using Open Source technologies outlined and Appendix |, and
provides the source code, the binaries and the user documentations for
the application in Appendix H.

9.1 Project Achievements

The project has successfully devised and followed a new design methodology to
design and implement the Office Management Application which satisfied the
original client’s requirements and utilised a number of Open Source technologies
to be cost effective. The project has carried out the design and implementation of
the business logic the user interface and the database for the application and in
doing so explored and utilised a wide range of software design methodologies

148

and Open Source frameworks. The project has also laid the foundation for the
continuing development of the Office Management Application to become a
mainstream application for small businesses.

The project has also assessed a number of technologies such as application
persistence requirements using a persistence framework such as Java
Persistence API. Based on this new Java standard the project has provided a
mechanism (summarised in Table 20) by which the Entity-Relationship model can
be mapped to and translated into Java Annotations so that the Java objects can
easily be serialised to the database tables. Also a transactional framework was
need to coordinate access to the domain objects and manage the security and
persistence; a framework such Spring was used and evaluated against
Enterprise Java Beans.

9.2 Project Issues

The project was hoping to implement an application that incorporates all the
modules identified by the author, however due to time constraints only the Staff,
Expenses, Tasks and System Settings modules were implemented.
Nevertheless, the project has gathered the requirements for and designed the
other modules and future work will be done to implement these remaining
modules in a subsequent version of the application. The time constraints on the
project have risen from the fact that the project has favoured exploring new
avenues for Web development and establishing some methodologies rather than
using the conventional Web development methodologies. In doing so the project
has face many issues in regards to utilising and using a wide range of
technologies, in particular the limitations of HTML and the incompatibility
between the various browsers. The fact that what works in one browser seems to
either not work or work differently in other browsers, was one of the major issues
faced during this project.

9.3 Contributions of this Dissertation

9.3.1 Problems with adapting functional-oriented Ul as content-
oriented Web Ul

Besides satisfying the requirements of the Office Management Application the
author wanted to investigate the possibility of using Web 2.0 concepts in
particular Rich Internet Applications to design and implement the application.
Rich Internet Applications are Web based applications that possess many
features that are similar to traditional desktop applications, hence utilizing the

149

features of both worlds. One of the problems that have been identified by this
project is that lack of a clear design methodology to design and implement such
types of applications in particular the design of the user interface. Using Web
pages design principles in an attempt to design functionality-oriented rather than
content-oriented user interface adds many complications to the design process,
which can be summarised as follows:

» Complex Web pages that relies heavily on the server, which results in poor
user experience, extra load and complex logic on the server.

» The in-ability to model together the interactions between the user, the user
interface and the application logic in the server, which usually results in
designers adopting none standard methods in attempt to bridge the gap
between functionality and contents.

» Trying to fit the functional-oriented nature of the user interface into Web
pages results in a great deal of desired interactive functionality to be
dropped due to the limitations of what Web pages can do.

9.3.2 Utilising the Web as a functional user interface

The root cause of the above complications is due to the hypertext nature of the
Web which is oriented toward contents and information rather than functionality.
However, although the Web is intrinsically a hypertext medium, the foundations
are there for a functional oriented medium similar to the one used for desktop
applications as demonstrated in the Table 2.

To address the limitations the project has come up with the idea of adopting an
Object-Oriented Web user interface so that the traditional established
methodologies can be applied. An Object-Oriented user interface is very close to
traditional desktop applications that are developed using Object-Oriented
languages such as Visual Basic or Visual C. Methodologies such the ones
outlined by Bennett et al. [4] can easily be applied to design and implement such
a user interface. The project has successfully devised a methodology to design
and implement an Object-Oriented rich user interface in HTML, CSS and
JavaScript which can be summarised below (subsection 6.4.2).

The design methodology which is largely based on the concepts outlined by
Bennett et al. [4]:

» Prototyping the user interface using the RIA techniques outlined by
Dawelbeit [11].

» Designing and elaborating the boundary classes that represent the various
widgets on the user interface. Some of these classes will be developed
and some already exists as DOM objects.

150

Modelling the interaction involved in the interface using interaction or
communication diagrams. The interactions modelled should also include
the objects on the server that will be handling the messages.

Modelling the control of the interface using state machines for complex Ul
components.

The implementation methodology which was developed as part of this project:

Choose the Web development toolkit also called AJAX toolkit to be used,
for example Dojo toolkit as used in this project. Most AJAX toolkits
available are Object-Oriented and based on JavaScript.

For the DOM objects in the boundary classes diagram define the widget
template which consists of HTML, CSS and other widgets. This will later
on be constructed as DOM nodes in the browser.

For the other objects in the boundary classes diagram define the View
Support Object (VSO) for the widget in using Object-Oriented JavaScript.

Implement the methods required for the VSO to control the DOM nodes.
These methods follow from the user interface models such as boundary
classes and interaction diagrams. Some of these methods should use the
DOM event model to trap the user’s actions.

Advantages of this approach

Below is a summary of the advantages in following the approach summarised
above to design and implement functionality-oriented Web user interfaces:

As the display is not generated by the server upon each request the client
can be deigned to work offline and have the ability to connect to the server
when needed.

The ability to offer greater usability and interaction to the end user as the
user interface is rich and self sufficient.

Using the server to only transfer data, increases the bandwidth available
to serve more client hence enabling scalability and high server
performance.

The capability to model the user interface along side the business logic
enables better understanding of the application logic and makes future
changes to the applications a lot easier. This results in time savings in
developing the final product.

151

Disadvantages

» With a great deal of logic written in JavaScript and transferred to the client
side there is a risk of concealed vulnerabilities and possible security
issues such as JavaScript Hijacking and Tempering.

* The approach used in this project relies on the browser capabilities which
are limited. To utilise the operating system features such 3D hardware
acceleration and local storage a browser plug-in will need to be used such
as Java Applets and Flash.

» Trying to adopt this approach requires a high level of experience and
proficiency in Web development to overcome the HTML limitations.

» Cross-browser compatibility adds extra cost during implementation and
testing for projects adopting this approach.

Summary

It is clear from the advantages and disadvantages presented above that this
approach to Web development is only suitable and applicable for functional-
oriented Web applications that are used by a limited number of people on a
regular basis to achieve some specific tasks. These applications are also likely to
be restricted to a secure environment and offer limited browsers support.
Browser support and compatibility in itself is one of the big issues that might
hinder the adoption of these methodologies for mainstream use, however the use
of browser plug-ins such as Microsoft Silverlight or Adobe AIR [11] rather than
directly using the browser capabilities, might well be the answer to this issue and
the way forward.

9.4 Suggestions for Future Work

The project has designed and implemented a HTML based Rich Internet
Application and has explored a wide range of principles and methodologies in the
software design arena. As this type of applications is relatively new and have not
got established principles and methodologies, a great deal of work during the
project went towards defining a methodology that can be followed. Although the
project has tried to touch all the issues concerned with Rich Internet Applications,
it has barely scratched the surface in many areas. Below are suggestions for
future work in the areas touched on during this project

152

9.4.1 Usability and Accessibility of RIA

Usability and accessibility is an area where work has been done for interactive
user interfaces and Web sites. Rich Internet Applications are a hybrid of both
desktop and Web applications and need a customized set of usability design
principles and rules that can be followed. This project has attempted to drive a
set of rules by combining the Web design principles with the traditional user
interface design principles. The project has also managed to carryout some
evaluation on the usability of the application after the initial use by the users;
however further future evaluations will be needed as the users become proficient
in using the application.

9.4.2 Performance of RIA

Another area that will need investigation and quantative measures is the
performance of Rich Internet Applications such as the Office Management
Application. It was observed as part of this project that transferring the HTML to
the browser only once and transferring only data thereafter using JSON has
improved the performance of the application considerably, however future work
will be needed to provide actual statistics of the performance of Rich Internet
Applications compared to traditional Web applications and desktop clients. This
measurement could possibly be performed on three types of application using
the same server to ensure the performance being measured only relates to the
user interface and its functioning.

9.4.3 Enhancements to the Office Management Application

Future work can also be carried out to implement the remaining modules of the
Office Management Application such as the Holidays and Timesheet modules
and provides the ability to generate reports. The project has gathered the
requirements and carried out the design for these remaining modules. Future
work can be done to implement these modules using the same approach
followed in this project.

153

10 References

10.1 Books and Articles

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Arrington, C.T. and Rayhan, S.H. (2003). Enterprise Java with UML. 2™
ed. Wiley

Bauer, C. and King, G. (2007). Java Persistence with Hibernate.
Greenwich: Manning Publications.

Bell, D. (15 Jun 2003) UML basics: An introduction to the Unified
Modelling Language. URL.: http://www-

128.ibm.com/developerworks/rational/library/769.html
[30 September 2007]

Bennett, S. McRobb, S. and Farmer, R. (2006). Object-oriented
systems analysis and design using UML. 3™ ed. London: McGraw-Hill
Companies.

Bennett, S. Skelton, J. Lunn, K. (2004). Schaum’s Outline UML. 2™ ed.
McGraw-Hill.

Bracha, G. (2004). Generics in the Java Programming Language. URL.:
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
[30 September 2007]

Chess, B., O’Neil, Y. and West, J. (2007). JavaScript Hijacking. URL.:
http://www.fortifysoftware.com/serviet/downloads/public/JavaScript_Hija

cking.pdf
[10 February 2008]

Connolly, T. Begg, C. (2005). Database Systems: A practical approach
to Design, Implementation, and Management. 4™ ed. Addison Wesley.

Couch, J. and Steinberg, H. (2002). Java 2 Enterprise Edition Bible.
Wiley.

Crane, D. Pascarello, E. James, D. (2006). Ajax In Action. Greenwich:
Manning Publications.

Dawelbeit, O. (2008). Web User Interface from Prototyping to
Implementation. URL.: http://change-vision.blogspot.com/
[10 April 2008]

154

http://change-vision.blogspot.com/
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://www-128.ibm.com/developerworks/rational/library/769.html
http://www-128.ibm.com/developerworks/rational/library/769.html

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Douglas, N. (2007). Free end-users to cash in on Web 2.0. Computer
Weekly. 22, 16-16.

Elmasri, R. Navathe, S. (1999). Fundamentals of database systems. 3"
ed. Addison-Wesley.

Edwards, C. (2007). Bandwagon: Has Ajax Over Exposed Itself. IET
Information Professional. June/July 2007, 10-11.

Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the
Heart of Software. Boston: Addison-Wesley Professional.

Gadge, V. Technology options for Rich Internet Applications. URL.:

http://www-128.ibm.com/developerworks/library/wa-richiapp/
[16 September 2007]

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley.

Garrett, J. J. Ajax: A New Approach to Web Applications. 18" Feb 2005.

URL: http://www.adaptivepath.com/ideas/essays/archives/000385.php
[20 September 2007]

Garrett, J. J. (2002). The Elements of User Experience: User-Centered
Design for the Web. New Riders Press.

Glowiak, M. MySQL vs. PostgreSQL. URL:

http://monstera.man.poznan.pl/wiki/index.php/Mysql_vs_postgres
[11 February 2008]

Grand, M. (1998). Patterns in Java, Volume 1, A Catalog of Reusable
Design Patterns lllustrated with UML. John Wiley & Sons, 2 vols.

Nielsen, J. (2002). Usability of Ephemeral Web-Based Applications.
URL: http://www.useit.com/alertbox/20021125.html
[12 February 2008]

Open University (1999). M358 Block4 : Development of Database
Systems. The Open University, Milton Keynes.

155

http://www.useit.com/alertbox/20021125.html
http://monstera.man.poznan.pl/wiki/index.php/Mysql_vs_postgres
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www-128.ibm.com/developerworks/library/wa-richiapp/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

O’Reilly, T. What Is Web 2.0, Design Patterns and Business Models for
the Next Generation of Software.

URL: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html?page=1

[16 September 2007]

O’Reilly, T. Web 2.0: Compact Definition?. URL.:
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.ht
ml

[16 September 2007]

Pawson, R. (2004). Naked Objects. PhD thesis. Trinity College, Dublin.

Pettey, C. Goasduff, L. Gartner’s 2006 Emerging Technologies Hype
Cycle Highlights Key Technology Themes. URL.:

http://www.gartner.com/it/page.jsp?id=495475
[10 February 2008]

Rajagopalan, S. Rajamani, R. Krishnaswamy, R. and Vijendran, S.
(2002). Java Servilet Programming Bible. Wiley.

Rymer, J. and Stone, J. (2007). Rich Internet Apps Move Beyond the
Browser. Forrester’s Reports. URL:
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.
html

[10 February 2008]

Richardson, C. (2006). POJOs in Action, Developing Enterprise
Applications with Lightweight Frameworks. Greenwich: Manning
Publications.

Shin, S. Web Application Security Threats and Counter Measures. URL:
http://www.javapassion.com/
[12 February 2008]

Shneiderman, B. (1998). Designing the User Interface: Strategies for
Effective Human-Computer Interaction. 3™ ed. Addison Wesley.

Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface:
Strategies for Effective Human-Computer Interaction. 4" ed. Addison
Wesley.

Stone, D. Jarrett, C. Woodroffe, M. and Minocha, S. (2005). User

156

http://www.javapassion.com/
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,42708,00.html
http://www.gartner.com/it/page.jsp?id=495475
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1

[35]

interface design and evaluation. Amsterdam ; London : Elsevier :
Morgan Kaufmann.

Walls, C. Breidenbach, R. (2006). Spring in Action.2™ ed. Greenwich:
Manning Publications.

10.2 Web references

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A government action plan for small business. Department of Trade and

Industry. URL: http://www.berr.gov.uk/files/file39768.pdf
[12 February 2008]

Acunetix Web Vulnerability Scanner v4 (Consultant Edition). URL:

http://www.acunetix.com/vulnerability-scanner/
[12 February 2008]

Apache Web Server and Modules. URL: http://httpd.apache.org/
[12 February 2008]

Core J2EE Patterns — Data Access Object. URL:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessOb

ject.html
[12 February 2008]

Crow’s Foot notation. URL: http://en.wikipedia.org/wiki/Entity-

relationship_diagram#Crow.27s Feet
[12 February 2008]

Database design: Choosing a primary key. URL:

http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-

key/
[12 February 2008]

Dojo Ajax Toolkit. URL: http://dojotoolkit.org/
[12 February 2008]

Dojo Toolkit Object oriented concepts and inheritance. URL.:

157

http://dojotoolkit.org/
http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-key/
http://immike.net/blog/2007/08/14/database-design-choosing-a-primary-key/
http://en.wikipedia.org/wiki/Entity-relationship_diagram#Crow.27s_Feet
http://en.wikipedia.org/wiki/Entity-relationship_diagram#Crow.27s_Feet
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://httpd.apache.org/
http://www.acunetix.com/vulnerability-scanner/
http://www.berr.gov.uk/files/file39768.pdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-
model/object-oriented-concepts-and-inheritance

[12 February 2008]

EHCache general purpose caching framework. URL:
http://ehcache.sourceforge.net/
[01 October 2007]

Enum Java 5 feature. URL:

http://java.sun.com/j2se/1.5.0/docs/quide/language/enums.html
[01 October 2007]

Generics Java 5 feature. URL:
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
[01 October 2007]

Hibernate, Relational Persistence for Java and .NET. URL.:
http://www.hibernate.org/
[12 February 2008]

Hibernate, Relational Persistence for Java and .NET. URL.:
http://www.hibernate.org/
[12 February 2008]

Jakarta DBCP connection pooling component. URL:

http://commons.apache.org/dbcp/
[01 October 2007]

Java Persistence API blueprints. URL:

https://blueprints.dev.java.net/bpcatalog/ee5/persistence/index.html
[12 February 2008]

Java Persistence APl Javadoc. URL:

http://java.sun.com/javaee/5/docs/api/javax/persistence/package-

summary.html
[01 October 2007]

JavaScript Object Notation. URL.: http://www.json.org/
[12 February 2008]

Microsoft Office SharePoint Server. URL:
http://www.microsoft.com/sharepoint/default.mspx
[12 February 2008]

Mod-Security Web Application Firewall. URL:

158

http://www.microsoft.com/sharepoint/default.mspx
http://www.json.org/
http://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://blueprints.dev.java.net/bpcatalog/ee5/persistence/index.html
http://commons.apache.org/dbcp/
http://www.hibernate.org/
http://www.hibernate.org/
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html
http://ehcache.sourceforge.net/
http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-model/object-oriented-concepts-and-inheritance
http://dojotoolkit.org/book/dojo-book-0-4/part-3-dojo-programming-model/object-oriented-concepts-and-inheritance

[59]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

http://www.modsecurity.org/
[12 February 2008]

Oracle Human Resources Management System. URL.:

http://www.oracle.com/applications/human_resources/intro.html
[12 February 2008]

OWAGSP Stinger Filter for J2EE applications. URL:

http://www.owasp.org/index.php/OWASP_ Stinger_Manual
[12 February 2008]

OWASP Top 10. The ten most critical web application security
vulnerabilities, 2007 update. URL:
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
[12 February 2008]

PostgreSQL 8.2 documentation manual online. URL:

http://www.postgresql.org/docs/8.2/static/index.html
[01 October 2007]

Sage Business Support Services. URL:
http://www.sage.co.uk/home.aspx
[12 February 2008]

Spring Application Framework. URL: http://www.springframework.org/
[12 February 2008]

Spring Framework Transaction Management. Spring guide online,
chapter 9. URL.:
http://static.springframework.org/spring/docs/2.0.x/reference/transaction
.html

[01 October 2007]

Struts 2 JSON plug-in. URL: http://code.google.com/p/jsonplugin/
[12 February 2008]

Struts 2 MVC Framework. URL: http://struts.apache.org/2.x/
[12 February 2008]

Struts 2 Request Flow. URL: http://struts.apache.org/2.0.11/docs/the-

struts-2-request-flow.html
[12 February 2008]

159

http://struts.apache.org/2.0.11/docs/the-struts-2-request-flow.html
http://struts.apache.org/2.0.11/docs/the-struts-2-request-flow.html
http://struts.apache.org/2.x/
http://code.google.com/p/jsonplugin/
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://www.springframework.org/
http://www.sage.co.uk/home.aspx
http://www.postgresql.org/docs/8.2/static/index.html
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
http://www.owasp.org/index.php/OWASP_Stinger_Manual
http://www.oracle.com/applications/human_resources/intro.html
http://www.modsecurity.org/

[65]

[66]

[67]

[68]

[69]

[70]

[71]

The New Methodology. URL:
http://martinfowler.com/articles/newMethodology.html
[12 February 2008]

Tibco General Interface, Getting started guide. URL.:

www.tibco.com/devnet/resources/qi/3_3/tib_gi_pe_getting_started.pdf,

pp14.
[01 October 2007]

Tomcat Java Application Server. URL: http://tomcat.apache.org/
[12 February 2008]

Tommie Web Office and Online Diary System. URL:
http://www.tommie.co.uk/
[12 February 2008]

UML Superstructure Specification, v2.1.1, p. 620. URL.:
http://www.omg.org/technology/documents/formal/uml.htm
[01 October 2007]

What is black box/white box testing? URL:
http://www.fags.org/fags/software-eng/testing-faq/section-13.html
[12 February 2008]

Windows Vista User Experience Guidelines. URL:
http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-

a9d5-2d4e3f3ec1d3/ux%20guide.pdf
pp 2-10
[01 October 2007]

160

http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html
http://www.omg.org/technology/documents/formal/uml.htm
http://www.tommie.co.uk/
http://tomcat.apache.org/
http://www.tibco.com/devnet/resources/gi/3_3/tib_gi_pe_getting_started.pdf
http://martinfowler.com/articles/newMethodology.html

11 Appendices

161

11.1 Appendix A — Office Management Application’s Modules Survey

Business Industry Size | Dedicated HR Staff Holiday Expenses Timesheet Pay Computer
Staff Management Management | Management | Management Management | Network
1 Construction 7 No Paper based Spreadsheet | Spreadsheet | Spreadsheet | Outsourced, Yes
record keeping done using
SAGE
2 Construction 7 No Paper based Spreadsheet | Spreadsheet | Spreadsheet | In-house, done Yes
record keeping using SAGE
3 IT 13 No Spreadsheet Spreadsheet | Spreadsheet | Web Outsourced Yes
Consultancy Application
4 Automotives 16 Yes Spreadsheet Spreadsheet | Spreadsheet | No timesheet | Outsourced Yes
Automotives 50 No Microsoft Paper based | Paper based | Spreadsheet | In-house Yes
Access forms
6 Health Care 130 Yes Held and Done using Done using Done using Outsourced Yes
updated by HR SharePoing SharePoing SharePoing
using Microsoft | forms forms forms
SharePoint
7 Manufacturing | 140 Yes System Spreadsheet | Spreadsheet | Automated In-house Yes
managed by HR | submitted to submitted to clocking-in accountants
department HR HR system
8 Utilities 230 Yes Updated by HR | Paper based | Paper based | Notimesheet | Outsourced Yes
Provider using Oracle HR | form form for office staff,

submitted to
HR. Done
using Oracle
HR

submitted to
HR. Done
using Oracle
HR

field staff
completes
paper form.

162

11.2 Appendix B — Documents Sampling

11.2.1Sample holiday control spreadsheet

John Smith 12 H H H H H

William Hans 5

Julie Eldrige 3 H H

Omer Dawelbeit 1

Thomas Julian 5 H

163

11.3 Appendix C — Use Case Models
11.3.1Add Staff Use Case

E % Get Available
Administrator Grades list
<<inc|ude>37 Get Available

- Work streams

I <<|rlc_l_uge.>;— -

Add Staff _

== Sﬂ'rlCl_UgB_”

- T

Get Available Online

N
) ~ Access Roles
=<include== =\

Get Available
Staff Narmes

Figure 73. Add staff use case diagram

Name:
Add Staff

Description:

The administrator adds a new member of staff. First all the Available grades,
work-streams, online access roles and staff names are retrieved. The admin
user completes the personal, bank, address, employment and online details.

Assumptions
* Grades have been added to the system
* Online access roles have been added to the system.
¢ A number of work-streams have been added to the system.
» The required details for the new member of staff are available

Preconditions
» Useris logged in to the system
Post-conditions
* The new member of staff is added successfully to the system and
their details can be viewed/edited

Normal flow of events — The administrator successful adds a member of
staff
* The administrator selects the add new staff option
» The administrator fills the personal, bank, address, employment
and online details for the new member of staff

164

The administrator clicks the add button
A message is displayed indicating that the employee details are
successfully added

Alternative flow of events — The administrator populate some invalid details

The administrator selects the add new staff option

The administrator fills the personal, bank, address, employment
and online details for the new member of staff, but forgets some of
the mandatory details.

The administrator clicks the add button

The system creates a task for the new staff member to change their
password.

A message is displayed indicating that some of the details provided
are invalid; no change is made to existing data.

Alternative flow of events — Employee already exists

The administrator selects the add new staff option

The administrator fills the personal, bank, address, employment
and online details for the new member of staff, but forgets some of
the mandatory details.

The administrator clicks the add button

The administrator is notified of the conflict. No change is made to
the existing data.

Alternative flow of events — Administrator cancels the process

The administrator selects the add new staff option

The administrator fills the personal, bank, address, employment
and online details for the new member of staff, but forgets some of
the mandatory details.

The administrator clicks the Cancel button

No change is made to the existing data.

Exception flow of events — The system is unable to add the new staff details
due to an error

Notes:

The administrator selects the add new staff option

The administrator fills the personal, bank, address, employment
and online details for the new member of staff, but forgets some of
the mandatory details.

The administrator clicks the add button

The administrator is notified that the details can’t be added to the
system due to a system error.

165

Staffs sensitive details such bank account, etc... are stored in encrypted

format

Activity Diagram

Administratar

Systemn

[Finish]

Initiate add staff

Fill persanal
details

[Finish]

Fill Bank Details

[Finizh]

Fill Address details

[Finish]

Fill Employment
details

Fill online details

Retrieve all available
grades

Retrieve online access
rales

Retrieve available wark
streams

Retrieve all staff
names

Walidate details

A\ Subrmit Details

Motify Invalid

details

Matify Errar

166

Prototype

% Add New Employee D

Firstname* IGmer Dawelbeit
Lastname* I
Date of Birth* I

Gender* FO-mOQ

¥ This value is required.

* This value is required.

Email Address |

Work Phone* l—
Home Phone I

Mational Insurance l—
Number*

Tax Code* l—

* This value is requirad.

* This value is required.

* This value is requirad.

personal Details | e e ———

% Add New Employee D

Bank/Building Society |

*
Name requirad,

Sort-Code* I
Account Number* I

* This value is required.

* This value is required.

e— von ool | —————————

* This value is

167

% Add New Employee

l

eie——— ~drces Deteis | ————

House Number

House Name

Street Line 1*

Street Line 2

Locality

Town*

County

Postcode*

| |
| |
I * This value is required.
| |
| |
I * This value is required.

I * This value is required.

22 Add New Employee D

Date Joined*

Employment Type*
Line Manager*
Grade*

Salary*

Holiday Entitlement*

Work Stream™®

I =

Contractor O - Permanent O

e cmrloyment Dol |

[Please Choose..

[Please Choose...

I * This value is required.
I “ This value is required.

MovaTech New Portal
IBM Bluesky
02 Content Management

168

' Personal Details | Bank Details | Address Details | Employment Details | Online Details |_
Enable Online Access* [] ves
Online Password
Confirm Online Password
Personal Photo
Online Role* [Please Choose...
x 4

11.3.2Find Staff Use Case

Find Staff

Staff

Figure 74. Find staff use case diagram

Name:
Find Staff

Description:
Search for a member of staff or browse all staff details. The user can search
by name, id, employee type, work stream or project

Assumptions

» Staff details are added to the system.

* Only current staff details can be viewed by regular staff. The details for
staff who left can only be viewed by administrators

Preconditions
User is logged in to the system.

169

Post-conditions

The staff member finds the details of the staff member they are trying to
find. Or none if the details searched for are not found

Normal flow of events — The staff member successfully find the details they

are searching for, one result found

The staff member selects the find employee option

The staff member selects the search type.

The staff member enters the search criteria details and click the search
button

The details for staff searched for are displayed

Alternative flow of events — The staff member successfully find the details

they are searching for, more than one result found

The staff member selects the find employee option

The staff member selects the search type.

The staff member enters the search criteria details and click the search
button

The records matching the search criteria are displayed.

Alternative flow of events — No details found for search

The staff member selects the find employee option

The staff member selects the search type.

The staff member enters the search criteria details and click the search
button

A message is displayed indicating that no details were found.

Exception flow of events — The system is unable to perform the staff details
search due to an error

The staff member selects the find employee option

The staff member selects the search type.

The staff member enters the search criteria details and click the search
button

A message is displayed indicating that an error has occurred.

170

Activity Diagram

Prototype

Search Employee

Display found
records

Select Search type

Enter search details and
click search

Search type [all]

’l\summaw

[Display all staff details

Search type [any]

Search for staff
details

Smj[\more than 1 records found]

[1 record found]

Display staff details

search Employee

Search By: [Name : Value: E

Name
Carla Marcus
Helga Becks
Carla Marcus
Helga Backs
David Adams
Ianna Tim
David Adams
Iannz Tim
Adam Smith
Fred Thomas
Adam Smith
Fred Thomas
Betty Hamilton
Greg Gregory

23
22
23
23
o1
o1
o1
o1
o1
o1
o1
o1

Apr,
Apr,
Apr,
Apr,
Now,
Now,
Nowv.
Now,
Mar,
Mar.
Mar,
Mar,

Date Joined

2002

2002
2002

2002
2002
2003
2003
2002
2004
2004
Z004
2004

15 Jun, 2003
15 Jun, 2005

Phone Number Address
F745453454 70 High Groove, Whitehall, London, W12 3ED
7745453454 10 Alexander House, Farm Lane, Mortimer, RG10 4RT
7745453454 70 High Groove, Whitehall, London, W1Z 3ED
7745453454 10 Alexander House, Farm Lane, Maortimer, RG10 4RT
2089454545 Alexander House, Farm Lane, Mortimer, RG10 4RT
7745453454 7 High Groove, Whitehall, London, W1iZ 3ED
2083454545 Alexander House, Farm Lane, Mortimer, RG10 4RT
77454532454 7 High Groove, Whitehall, London, W12 3ED
7786368052 74 Westlands Ave, Reading, RG2Z BEW
7786368052 70 High Groove, Whitehall, London. W12 3ED
7786368052 74 Westlands Ave, Reading, RGZ SEW
7786368052 70 High Groove, Whitehall, London, W12 3ED
1189582845 7 Horspath Road, Cowley, Oxford, OX4 2QL
2089454545 80 Westlands Ave, Reading, RGZ 8EW

<

171

11.3.3View Personal Details / Edit Personal Details

Edit Personal
Details

1
:<e)¢'tend>>
i

View Personal
Details

Figure 75. View/Edit personal details use case diagram

Name:
View personal details

Description:

The current member of staff views their personal details. After view their
details members of staff can also edit these details. Regular staff can edit only
a subset of their details. On the other hand Admin users can edit all their
personal details.

Assumptions
* None

Preconditions
User is logged in to the system.

Post-conditions
» If the staff member has edited their personal details, then the new
changes are persisted and can be viewed using view my details use case.

Normal flow of events — The staff member successfully views their details
* The staff member selects the my details option
» The details for the staff member are displayed.

Alternative flow of events — The staff member successfully edit their details

» The staff member selects the my details option

» The details for the staff member are displayed.

» The staff member selects to edit his/her personal details.

* The staff member edit their details, not all details are editable for regular
staff members

172

» The staff member save the changes they made to their personal details
» The system generates a task for the Administrator to review the changes

Alternative flow of events — An Administrator successfully edit their details
» The administrator selects the my details option

» The details for the administrator are displayed.

e The administrator selects to edit his/her personal details.

» The administrator edit their details, all details are editable.

» The administrator save the changes they made to their personal details

Alternative flow of events — The staff member edits their details, but cancels
the operation

» The staff member selects the my details option

» The details for the staff member are displayed.

» The staff member selects to edit his/her personal details.

* The staff member edit their details

» The staff member cancels their changes. No changes are made to
underlying data

Exception flow of events — The system is unable to display the details of the
current staff member due to an error

» The staff member selects the my details option

A message is displayed indicating that an error has occurred.

Outstanding issues

Clarify which fields will be editable for staff members, some candidates are
email, contact numbers and address.

173

Activity Diagram

(Initiate wiew my details)

(Display staff details)

I Edit details

(Mo

>@®

[res]

[administratar=na]

(Alluwedtu edit

AW
limited details }\

[administrator=yes]

Allnwed to edit all
detans

Save

Cancel chanoes
Isave [ria] J)

[ves]

Save Changes)

unsuccessiul

Mot
(olffpisave Motify save successiul)

174

11.3.4View brief /| complete staff details

Find Staff

£40

==inciude=»

View Brief Staff
Details

A

Accountant

View Complete
Staff Details

Extension Points
Action type

Administrator

Figure 76. View brief/complete staff details use case diagram

Name:
View staff details

Description:

The current member of staff views the details of another staff member.
Regular staff member can view a brief summary of other staff details. Admin
and accountant users can view all the details for any member of staff.

Assumptions
* None

Preconditions

* Useris logged in to the system.

» The current user has located the details for another staff member using
the find staff use case

Post-conditions
« None

Normal flow of events — Regular staff member views the details of another

staff member
» The staff member selects to view the staff details of another staff

175

» The brief details for the other staff member are displayed.

Alternative flow of events — Administrator or accountant views the details of
another staff member

 The administrator or accountant selects to view the staff details of another
staff

» The full details for the other staff member are displayed

Exception flow of events — The system is unable to display the details of the
staff member due to an error

» The staff member selects to view the staff details of another staff

A message is displayed indicating that an error has occurred.

Outstanding issues
Clarify which staff member fields will viewable by other regular staff members.

Activity Diagram

Select staff details
o wiew

(Retrieve staff details)

I retrieve successful

Display errar
mesage

Check current staff's role)

Display full staff '\ JK [Display brief staff)

(details JTadministrator] " [regular staf] 7\ details

176

11.3.5Edit staff details

Edit Employment
Details

==include==
i -
i r ’
I ==gxtands=
I #
' K g Edit Online
i Access Details
I
I # = E i
. Iz » ==grtend

Administrator Edit Staff Details

Edit Staff
Personal Details

==gxtend=

Figure 77. Edit staff use case diagram

Name:
Edit staff details

Description:
Admin users can edit other staff details.

Assumptions
» The member of staff to be edited is already registered

Preconditions
* Useris logged in to the system.
» The current user has located the details for another staff member using

the find staff use case
» The current user view the staff member details using the view details use

case

Post-conditions
» If the edited staff details are saved then these details are persisted and

can be viewed using the find staff use case

Normal flow of events — Administrator successfully edits the details of

another staff member
* The administrator selects to edit the details of another staff member

» The full details of the other staff member are displayed.

177

» The administrator edits the personal, bank, address, employment and
online details for the staff member.

» The administrator set the leaving date if applicable and the staff member
has left.

» The administrator saves the details

* A message is displayed indicating the save was successful.

» The system creates a task to inform the staff member of the changes

Alternative flow of events — The administrator populate some invalid details

» The administrator selects to edit the details of another staff member

» The full details of the other staff member are displayed.

* The administrator edits the personal, bank, address, employment and
online details for the staff member.

« The administrator set the leaving date if applicable and the staff member
has left.

» The administrator tries to saves the details

* A message is displayed indicating that some of the details provided are
invalid; no change is made to existing data.

Alternative flow of events — Administrator edits the details of another staff
member, but cancels his/her action

e The administrator selects to edit the details of another staff member

» The full details of the other staff member are displayed.

« The administrator edits the personal, bank, address, employment and
online details for the staff member.

» The administrator set the leaving date if applicable and the staff member
has left.

» The administrator cancels the changes. No change is made to underlying
data.

Exception flow of events — The system is unable to save the details of the
staff member due to an error

» The administrator selects to edit the details of another staff member

» The full details of the other staff member are displayed.

» The administrator edits the personal, bank, address, employment and
online details for the staff member.

» The administrator set the leaving date if applicable and the staff member
has left.

» The administrator saves the details

A message is displayed indicating there was an error saving the details.

Outstanding issues

Are administrators assigned a specific set of staff they can manage, by a
super user or they can manage any staff details.

178

Activity Diagram

Administrator

System

I Select staff details to edit }——

Retrieve all available
grades

Retrieve online access
tales

Retrieve available work
streams

Retrieve all staff

Edit personal
details

[Finish]
Edit Bank Details
[Finish]
Edit Address
details
[Finish]
Edit Employment
details
[Finish]
Edit online details

names

Walidate details

e Submit Details |

Motify Invalid
details

Matify Errar

[Success]

Motify success

179

11.3.6Find Expenses

View Expenses

Extension Foints
Expenses status

Stﬂﬁ i =zinclude==
~ . N
Find Expenses
==includes=
Approve Expenses \
Extension Foints ==include==
Missing Info 1
Approver :
1
I
Pay Expenses
Accountant
Figure 78. Find expense use case diagram
Name:

Find Expenses

Description:

Staff members can find their expenses using an expenses browser, where
they can search by year or expenses status. Approvers can also search
expenses they are approving by staff name, year or expenses status. This

use case is part of the View Expenses, Approve Expenses and Pay Expenses
use cases

Assumptions

» Expenses have the following statuses: New, Saved, Pending, Rejected,
Approved and Paid

Preconditions
e Userislogged in to the system.

180

Post-conditions
« None

Normal flow of events — Regular staff member searches for an expense

» The staff member selects the find expense option

» The staff member sets the view criteria, either view all expenses, view by
year or view by status.

« The member of staff check the displayed list and select the expense they
are looking for

Alternative flow of events — Approver or accountant searches for expenses
of another staff member

» The Approver or accountant selects the find expense option

» The Approver selects the staff member name from a list of staff they are
allowed to approve expenses for

» The Accountant selects the staff member name from all staff list.

» The staff member sets the view criteria, either view all expenses, view by
year or view by status. Available statuses are: Pending, Approved and
Paid.

» The Approver or accountant check the displayed list and select the
expense they are looking for

Exception flow of events — The system is unable to find staff expense due
to an error

» The staff member selects to view expenses

A message is displayed indicating that an error has occurred.

Outstanding issues
None

181

Activity Diagram

Lser System

(Initiate Yiew Expenses)

Select Staff Mame
(%5 Approver or Accountant] e [Reqular staff J{

Fetch Expenses for
Staff Mame

Select view criteria

Qrganise Expenses by
selected wiew criteria

182

Prototype

r@ View Expenses

T
J Expenses Summary

View: | Expenses List | Total Approved Expenses: £1976.34 | Total Approved Miles: 16,456

| = Expenses
EHrg All
2007 - Oct Status: Approved ¢

Expenses Summary for Period

==)

o . 2007 - Sep :

7 ;' 2007 - Aug Total mileage for period: 150 miles

E 5 2006 - Dec Total mileage to date: 12,150 miles

- Total cdaimed exc. VAT: £1550.35

2 2006 - Jul il

P * . 2006 - Feb Total claimed inc. VAT: £1821.66

.} e Expenses Items Summary

) 10 Oct, 2007 Monthly Broadband u] N £25

i 11 Oect, 2007 Mileage from Home to Newbury 30 N £8
12 Oct, 2007 Office Equipment o b £130
16 Oct, 2007 Mileage from Home to Newbury 20 N £8
17 Oct, 2007 Mileage from Home to Newbury 20 N £5

Expenses Summary

View: | Expenses by Status | Total Approved Expenses: £1976.34 | Total Approved Miles: 16,456

E-gf&pset::es Expenses Summary for Period
x us
[=H - | Appro‘ued Status: Approved J
2006 - Jul
2006 - Feb Total mileage for period: 150 miles
"_J 2005 - Dec Total mileage to date: 12,150 miles
i = Pendlng Total daimed exc. VAT: £1550.35
':;' Total claimed inc. VAT: £1821.66
: R:]i{c}f:d Dexc Expenses Items Summary
o :
I_TT bl 110 Oct, 2007 Monthly EerEldbd R . N : £25
L Saved 11 Oct, 2007 Mileage from Home to Newbury 30 N £5
I_Y."i' 2007 - Sep {12 Oct, 2007 Office Equipment u] Y £130
16 Oct, 2007 Mileage frem Home to Newbury 30 N £8
117 Oct, 2007 Mileage from Home to Newbury z0 N £8

183

: ,L@) View Expenses

Expenses Summary

View: | Expenses by Year | Total Approved Expenses; £1976.24 | Total Approved Miles: 16,456

EHTT Expenses Expenses Summary for Period
v Year
["}h— 2007 Status: Approved J
-~ Oct
-jSep Total mileage for period: 150 miles
']‘Al.l-g Total mileage to date: 12,150 miles
[_}f'l 20{:‘6 Total claimed exc. VAT: £1550.35
1 # Total claimed inc. VAT: £1821.66
v Dec
o Jul
o Expenses Items Summary
‘i Feb , o
I_t 10 Oct, 2007 Monthly Broadband o N E25
¥ 11 Oct, 2007 Mileage from Home to Newbury 30 N £5
12 Oct, 2007 Office Equipment o ¥ E1320
16 Oct, 2007 Mileage from Home to Newbury 30 N £8
17 Oct, 2007 Mileage from Home to Newbury 30 N

184

11.3.7View, approve, reject and pay Expenses

View Expenses

extension points
Expenses status

==gxtend== "
e =T =sincludes=
View Staif Expenses - |
tal =Xp & Congdition {
extension points expenses status is |
Expenses status submitted and is
Approver approver for current
/ expense}
Find Expenses
Approver ==inclyde=£ §
Approve Expenses =<include=»
extension points 1
= Missing Info X
<=gutends= " 7 i
Reject Expenses Condition { Missing Pay Expenses
Infois true}
Accountant

Figure 79. View, approve, reject and pay expenses use Case diagram

Name:
View Expenses

Description:
After finding an expense the staff member can view its details.

Assumptions

» Expenses have the following statuses: New, Saved, Pending, Rejected,
Approved and Paid

» Approvers can see Pending, Approved and Paid expenses

» Accountant can see Approved and Paid expenses.

Preconditions
* Useris logged in to the system.
» User navigate to the target expense using the find expenses use case

Post-conditions

185

« None

Normal flow of events — Staff member view an expense
» The staff member click on an expense

* The system displays the expense details

» The staff member views the displayed expense details.

Alternative flow of events — Staff member edits a saved or rejected expense
» The staff member click on an expense

* The system displays the expense details

» The staff member views the displayed expense details.

» The staff member click on the edit button

» The staff member is forwarded to the edit expenses use case

Alternative flow of events — Approver approves or rejects expense

* The approver click on an expense

* The system displays the expense details

» The approver views the displayed expense details.

» The approver click on the approve button or select some expense items
enter some text and reject the expenses

» The expense is saved in either approved or rejected status

» If rejected the system generate a task for staff member

Alternative flow of events — accountant pays an expense

» The accountant click on an expense

* The system displays the expense details

» The accountant views the displayed expense details.

» The accountant enters the paid date and click the pay button
» The expense is saved in paid status

Exception flow of events — The system is unable to find expense due to an
error

» The staff member click on an expense

A message is displayed indicating that an error has occurred.

Outstanding issues
Decide on which expense details to display

186

Activity Diagram

Select an expense from
list
Check curent user

[stafl]

[ppraver]

[Acequntant]

Get expenses for
staff member

Get Approved and Paid
expenses for staff member

Get Pending, Approved
and Paid expenses for
staff memper

[status = Pending]

Display expense details with
the ability to approve or reject

Enter reason for
rejection

Reject Expense
Save Expense as
rejected
Create Task far
staff member

[otherwise] [status = rejected or saved) otherwise] [status = Apprave] [Roproved of Paid]

Display expense details
without the ahility to edit

Display expense details
with the abilityta edit

Display expense details
with the ability to approve

Display expense details
without the ability o edit

Enter pay date
Save expense as
paid

[status = rejected]

Display reasan for
rejection saved]

Display expense details
without the ability to edit

Approve Expense

Save expense as
approved

Prototype

V’B(pens«s QEE

1 Expenses Summary

}? View: i Expenses List MI Total Approved Expenses: £1975.34| Total Approved Miles: 16,456
i

|

¥ IE =

| | “Expenses Expenses Summary for Period

4 B Al 3

) - 2007 - Oct Status: Sawved L\% "Edif
b - 2007 - Sep — : = =

}1 = 2007 - Au Tu-tal m_;ge nrdper H 150 mil E_I

b . ;20{:‘6 - Dec Tota n'u_ ge to date: 12,150 miles

1 = 2006 - Jul Total claimed exc. VAT: £1550.35

} 2 Total claimed inc. VAT: £1821.66

+ 2006 - Feb
+ 2005 - Dec

Expenses Items Summary

Description. e e e
Monthly Broadband o N £25
Mileage frem Home to Newbury 30 N £8
Office Equipment o] Y £130
Mileage from Home to Newbury 30 M £8
Mileage from Home to Newbury 30 N £8

187

T View Expenses !E

E | Expenses Summary

] View: | Expenses List |t| Total Approved Expenses: £1976.24 | Total Approved Miles: 16,456
it
] = r- |
3 " Expenses Expenses Summary for Period
: EHew All
J » 2007 - Oct Status: Rejected X ﬁ
9 12007 - Sep — — :
Total mileage for period: 150 miles
J . 2007 - Aug o 2
k| | De Total mileage to date: 12,150 miles
- Total claimed exc. VAT: £1550.35
» 2006 - Jul o 5
Total claimed inc. VAT: £1821.66
2006 - Feb
+ 2005 - Dec
Expenses Items Summary
Date Entered ': Description | Mileage | Receipt | Amount
10 Oct, 2007 |Monthly Broadband o In |£25
11 Oct, 2007 Mileage from Home to Newbury =0 M IES
12 Oct, 2007 Office Equipment u] & & |£L30
16 Oct, 2007 Mileage from Home to Newbury ‘30 M |£8
17 Oct, 2007 Mileage from Home to Mewbury |30 L i£8

Reason for rejection: FPlezse specify which office equipment was purchased

11.3.8Edit Expenses Use Case

Name:
Edit Expenses

Description:

After viewing an editable expense or trying to add a new expense for a period
where a saved expense already exist the staff member is allowed to edit the
expense and cancel, save or submit their changes

Assumptions

» Expenses have the following statuses: New, Saved, Pending, Rejected,
Approved and Paid

* When adding expenses for a period and saved expenses exist for the
same period then the system displays the saved expenses instead

Preconditions

* Useris logged in to the system.

* User views the expense using the view expenses use case

» User selects a period with a saved expense using the add new expenses
use case

188

Post-conditions
* The edited expense details are persisted if the user has submitted them,
otherwise no change is made to underlying data

Normal flow of events — Staff member edits an expense and submits it.
» The staff member reviews and/or modifies the current entries.

» The staff member adds new entries.

» The staff member deletes an entry if need be.

* The staff member submit their expenses

* Expense details is saved and status changes to Pending

» Atask is generated for the approver

* A confirmation is displayed confirming the submit

* The edit window is closed.

Alternative flow of events — Staff member edits an expense and saves it.

» The staff member reviews and/or modifies the current entries.

» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member save their expenses

* Expense details is saved and status stays as saved the last saved date is
updated

» A confirmation is displayed confirming the successful save

Alternative flow of events — Staff member edits an expense, but cancels
their changes.

» The staff member reviews and/or modifies the current entries.

» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member cancel their changes

* A confirmation is displayed asking the staff member if they want to
abandon their changes

Exception flow of events — The system is unable to save or submit expense
due to an error

» The staff member reviews and/or modifies the current entries.
» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member save or submit their expenses

* An error message is displayed indicating an error

Outstanding issues
Decide on which expense details to display

189

Activity Diagram

(Initiate edit expenses)
(Fetch expenses details)

(Fetch mnemonics)

. f Review currant L-

expense items

Add Expense ltem (Delete expense item)

edit expensze item '

[not finished]

[finished]

S

Suhmit Expenszes

(Displa\,r confirmation)

Save Expenses

[finished = true]

Cancel changes

Confirm Cancel
[add mare]

190

Prototype

)r_ Add/Edit Bxpenses HED

Add/Edit Expenses

Expenses Period: :.Oct 2007 [r_[Status: Saved HB Last Saved: Mon, 21/10/2007 13:50

Actions Date Mnemonic Type Description Amount Miles |

[# ¥ won 100911978 broadband Fhone & Internet Monthly broadband charges £25 2
D f > Tue, 10/09/1999 home Mileage Mileage from home to Newbury £15 50
|:| y X Wed, 10/09/1978 broadband Phone & Internet WMaonthly broadband charges £25
D f > Thurs, 10/09/1999 home Mileage Mileage from home to Newbury £15 50
N x D [[®*] [Please Choose. [l _- i [

| .) Total £80 100 |
1 Checkall/Uncheckall | Wihssleclad [v]

11.3.9Add New Expenses Use Case

Condition {saved
Expenses exist for

Edit Expenses
expensesPeriod} d
{dE};‘tEHJ}}
\ .{.:f
Staff
Add Expenses
==includes==

- —— e o

extension points
Expenses Period

Fetch Mnemonic

Figure 80. Add new expenses use case diagram

Name:
Add Expenses

Description:

191

A staff member can add new expenses after choosing the period of the
expense if a saved expense exist for the chosen period then the staff edits the
expense using the edit expenses use case.

Assumptions

» Expenses have the following statuses: New, Saved, Pending, Rejected,
Approved and Paid

 When adding expenses for a period and saved expenses exist for the
same period then the system displays the saved expenses instead

Preconditions
» Useris logged in to the system.

Post-conditions
* The added expense details are persisted if the user has submitted them,
otherwise no change is made to underlying data

Normal flow of events — Staff member adds an expense and submits it.
» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member edits a newly added entry

* The staff member submit their expenses

» Expense details is saved and status changes to Pending

* The system generates a task for the approver

* A confirmation is displayed confirming the submit

* The edit window is closed.

Alternative flow of events — Staff member add an expense for a period for
which a saved one already exists.

» The staff member edits the saved expense as outline in the edit expense
use case.

Alternative flow of events — Staff member add an expense and saves it.

» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member edits a newly added entry

» The staff member save their expenses

* Expense details is saved and status stays as saved the last saved date is
updated

* A confirmation is displayed confirming the successful save

Alternative flow of events — Staff member add an expense, but cancels their
changes.
» The staff member adds new entries.

192

» The staff member edits a newly added entry

» The staff member deletes an entry if need be.

» The staff member cancel their changes

* A confirmation is displayed asking the staff member if they want to
abandon their changes

Exception flow of events — The system is unable to save or submit expense
due to an error

» The staff member adds new entries.

» The staff member deletes an entry if need be.

» The staff member save or submit their expenses

* An error message is displayed indicating an error

Outstanding issues
Decide on which expense details to display

193

Activity Diagram

(Initiate add expenses)

Select period

[no saved expenses]

\‘/ [saved expenses exist]
(Fetch expenses details)\ P

=| Fetch mnermonics <

'I Add new item l

~ |" Review current }/

“\ expensze itemns
Epms

' edit expense itam l 'I Add Expense ltem l

l Celete expense item }

L

k

[not finished]

[finished]

Save Expenses

[finished]

Cancel changes

[notfinised]

Submit Expenses

Display confirmation

Canfirm Cancel

[add mare]

194

Prototype

Add/Edit Expenses

Add/Edit Expenses

Expenses Period:

saws: New |]

~Actions Date MNnemonic Type Description Amount Miles _\:15 —

O x 25 | [¥] [Please Choose EH | Tl ‘ I:I]
1 Checkall/uncheckal | With sslected: [v]

195

11.3.10Login use case

Name:
Login

Description:
The member of staff provides their username and password to login and the
system performs authentication and authorisation on the details provided..

Assumptions
* None

Preconditions
« None.

Post-conditions
« The user is logged in to the system and has the correct role applied

Normal flow of events — Staff member successfully login to the system.
» The staff member enters their username and password.

» The staff member clicks the login button.

» The system authenticates the staff member against stored details.

» The system resets the invalid login details for the staff member

* The system displays the application desktop.

Alternative flow of events — Staff member username is not found or the
account is locked.

e The staff member enters their username and password.

» The staff member clicks the login button.

* The system authenticates the staff member against stored details

* The system displays a message that the username and password
provided are invalid or that the account is locked and the user should
contact an administrator.

» The system creates a task to inform the administrator of the incident.

Alternative flow of events — Staff member password is not correct.

» The staff member enters their username and password.

» The staff member clicks the login button.

» The system authenticates the staff member against stored details

* The system increments the invalid login count

* The system displays a message that the username and password
provided are invalid.

» If this the last attempt before the account is locked. The system locks the
account

196

Exception flow of events — The system is authenticate the staff member due

to an error

e The staff member enters their username and password.

» The staff member clicks the login button.

* The system authenticates the staff member against stored details
* The system displays a message indicating an error has occurred.

Outstanding issues
None

Activity Diagram

User

Systemn

Enter username and
password

Fetch username

(Click the lagin button :}

[Exists]

from datahase

[Doesn't Exis]

(Check password provided)

against stared one

[Doesnt match]

Check max lagin

-
[Match]

Create the user's
Session

attempts

[Exceeded] [not exceeded]

~

Display errar]
Lock accaunt message
{ Apply user role I

(Displa\; application \

deskiop

-®

197

11.3.11View/Update system settings

Name:
View/Update system settings

Description:
An administrator can view the system wide settings and update/save them.
After viewing the system settings the administrator updates the setting

Assumptions
* None

Preconditions
« None.

Post-conditions
* The updated system settings are successfully saved

Normal flow of events — Administrator successfully views system settings.
» The Administrator clicks on the system setting options.

» The application retrieves the settings currently stored.

» The application displays the system settings.

* The Administrator views the various settings

* The administrator closes the system settings window.

Alternative flow of events — Administrator successfully updates the system
settings.

* The Administrator clicks on the system setting options.

* The application retrieves the settings currently stored.

» The application displays the system settings.

» The administrator modifies the system settings such as holiday rules,
creates a new workstream, project, user role, etc... and click the save
button

* The application displays a message that the settings were saved
successfully

Alternative flow of events — Administrator changes the system settings but
cancel the changes.

* The Administrator clicks on the system setting options.

» The application retrieves the settings currently stored.

» The application displays the system settings.

« The administrator modifies the system settings and click the cancel button

* The system settings window is closed.

198

Exception flow of events — The system fails to update the system settings
due to an error

» The Administrator clicks on the system setting options.

» The application retrieves the settings currently stored.

* The application displays the system settings.

» The administrator modifies the system settings and click the save button

» The system displays a message indicating an error has occurred.

Outstanding issues
None

199

Activity Diagrams

Administratar

System

Edit haliday rules

Edit Grades

Edit ugerroles

Edit workstreams

Edit timebaaking

[Finish]
[Finigh]
[Finish]
and projects
[Finish]
setting
[Finish]
setlings

Edittask management

A Submit Details |

Yalidate details

Motify [realid

details

Motify Error

[Success]

Motify SUccess

200

Administratar

System

(

Initialize wiew
systerm settings

)7

%(Reterieve haliday rules)
(Retrieve Grades)

(Retrieve user rales)

Fetrieve Workstreams
and their projects

kA
Retrieve Expenses
Settings

A4

Fetrieve TimeBooking
settings

!

Retrieve Task
management settings

)

A/

(Display results)

201

11.3.12Update my settings

Name:
Update my settings

Description:
A staff member can change their online password or update their online
preferences such as desktop background colour, etc...

Assumptions
* None

Preconditions
« None.

Post-conditions
* The updated staff member settings are successfully saved

Normal flow of events — Staff member successfully update their settings.

» The staff member clicks on my setting options.

» The application retrieves the settings currently stored for the staff member.

» The application displays the staff member settings.

» The staff member changes their password by entering their current
password and new password

» The staff member changes their preferences

» The staff member then saves the current changes.

* The system displays a success message

Alternative flow of events — Staff member views their settings.

» The staff member clicks on my setting options.

» The application retrieves the settings currently stored for the staff member.
» The application displays the staff member settings.

» The staff member view their settings

» The staff member clicks the cancel button

Alternative flow of events — Staff member changes the system settings but
cancel the changes.

» The staff member clicks on my setting options.

» The application retrieves the settings currently stored for the staff member.

» The application displays the staff member settings.

» The staff member changes their password by entering their current
password and new password

» The staff member changes their preferences

« The staff member modifies their settings and click the cancel button

202

* The system settings window is closed, and underlying data is not
changed.

Exception flow of events — The system fails to update the staff member
settings due to an error

» The staff member clicks on my setting options.

» The application retrieves the settings currently stored for the staff member.

» The application displays the staff member settings.

» The staff member changes their password by entering their current
password and new password

» The staff member changes their preferences

» The staff member then click the save button.

» The system displays a message indicating an error has occurred.

Outstanding issues

None

Activity Diagrams

203

Staff Systemn

Fetch current
user's settings

| Display settings)}

Initiate update
my settings

Change Password

[Finish]

%Seﬂings l
l Submit Details }

Walidate details

Motify Invalid
details

Motify Errar

[Success]

Matify success

11.3.13View/Add Timesheet

Name:
View or Add Timesheet

Description:

Staff members can view their timesheet for a specific period and also
update/save their timesheet or add a new entry. Administrator can view or edit
timesheet entries for all staff members

Assumptions
 Administrators can view and edit timesheet entries for all staff

Preconditions
 None.

204

Post-conditions
* The updated staff member timesheet are successfully saved

Normal flow of events — Staff member successfully view their timesheet.

» The staff member clicks on view timesheet.

» The application retrieves the timesheet entries for the currently selected
period.

» The application pre-populates any holidays requested in the holiday
booking system for the current period

» The application displays the staff member timesheet entries.

» The staff member clicks the cancel button

Alternative flow of events — Staff member successfully update their
timesheet.

» The staff member clicks on view timesheet.

» The application retrieves the timesheet entries for the currently selected
period.

* The application displays the staff member timesheet entries

* The staff member updates their timesheet entries

» The staff member then saves the current changes.

* The system displays a success message

Alternative flow of events — Staff member successfully update their
timesheet but cancel the changes.

» The staff member clicks on view timesheet.

» The application retrieves the timesheet entries for the currently selected
period.

» The application displays the staff member timesheet entries

» The staff member updates their timesheet entries and click the cancel
button

* The system settings window is closed, and underlying data is not
changed.

Exception flow of events — The system fails to update the staff member
settings due to an error

» The staff member clicks on view timesheet.

» The application retrieves the timesheet entries for the currently selected
period.

* The application displays the staff member timesheet entries

e The staff member updates their timesheet entries

» The staff member then saves the current changes.

» The system displays a message indicating an error has occurred.

Outstanding issues

205

None

Activity Diagrams

206

Staff Systermn

[administratar]
[not adminstrator]

- - - Fetch available projects
(Select staff name H Initiate \f|ewt|mesheet} %fur Staﬁworkstrgaré)

Fetch absence
reasons list

Fetch timesheat
Wiew Timesheet enteries far period

[Finish]

Edittimesheet
entry

[Finish]

Add timesheet entry

[Finish]

Delete timesheet
entry

Yalidate details

ets)

Submit Details

Motify Invalid
details

Motify Error
[Success]

Motify success

@

11.3.14View timesheet summary

207

Name:
View timesheet summary

Description:
Staff members views a summary of their timesheet entries

Assumptions
* Administrators can view the timesheet entries summary for all staff

Preconditions
« None.

Post-conditions
* None.

Normal flow of events — Staff member successfully view their timesheet.

» The staff member clicks on view timesheet summary.

» The staff member selects the period to view

» The application retrieves the timesheet entries summary for the currently
selected period.

» The application displays the staff member timesheet entries summary.

» The staff member view the summary then clicks the close button

Exception flow of events — The system fails to retrieve the summary for the
staff member due to an error

» The staff member clicks on view timesheet summary.

* The staff member selects the period to view

» The system displays a message indicating an error has occurred.

Outstanding issues

None

Activity Diagrams

208

Staff

System

Select period

[administraton

[not adminstrator]

" Select staff name }%{

Initiate Wigw timesheet)

‘.\(Fetch available projects

summary

""\fcur stafi workstream

)

Fetch absence
reasons list

Fetch timesheet

enteries for period

Create timeshest
summary

)

209

11.3.15View Holiday Details use case

Name:
View Holiday details

Description:

Staff member can view their holiday summary and request new holiday or
cancel a requested holiday. The system should also enforce the holiday roles
and import holidays entered in the timebooking system. Holiday approvers
should be able to view the holiday for their staff and approve or reject their
holidays.

Assumptions

» Holiday approvers can update, approve or reject holiday for their staff.

* Holidays have statuses, which can be requested, approved and taken.
The holiday becomes taken when entered in the timesheet.

» Each employee have holiday entitlement for each holiday year

Preconditions
 None.

Post-conditions
* None

Normal flow of events — Staff member successfully view their holiday
summary.

» The staff member clicks on view holiday.

» The system retrieves the holiday for the staff member.

» The system retrieves the holidays booked in the time-booking system.

» The system displays the holiday summary for the staff member.

» The system displays approve, reject and cancel buttons for approvers.

» The staff member views the details then clicks the close button

Alternative flow of events — Staff member successfully request new holiday.

» The staff member clicks on view holiday.

» The system retrieves the holiday for the staff member.

» The system retrieves the holidays booked in the time-booking system.

» The system displays the holiday summary for the staff member.

» The staff member then request a new holiday by selecting the start date
and finish date, then submits their request.

» The system saves the holiday request and creates a task for the holiday
approver.

* The system displays a success message

210

Alternative flow of events — Staff member successfully cancels a requested

holiday.

The staff member clicks on view holiday.

The system retrieves the holiday for the staff member.

The system retrieves the holidays booked in the time-booking system.
The system displays the holiday summary for the staff member.

The staff member selects a requested holiday and clicks the cancel
button.

The system deletes the holiday request.

The system displays a success message

Exception flow of events — The system fails to update the staff holidays due

to an error

The staff member clicks on view holiday.

The system retrieves the holiday for the staff member.

The system retrieves the holidays booked in the time-booking system.
The system displays the holiday summary for the staff member.

The staff member then request a new holiday by selecting the start date
and finish date, then submits their request.

The system displays a message indicating an error has occurred.

Outstanding issues
None

21

Activity Diagrams

Staff

Systern

(Initiate wiew hnlida\,r)

[administratar] [not adminstratar]

(

- |' Get Haliday far

'l Select staff narme §

staff memhber

Checktimesheet entries and
mark taken holidays

ﬁ

@(N
[finish]

[hal yet]

Request new
holiday

Display holiday

-

Cancel requested
holiday

[administratar] [non administratar]

[finish]

Q<

[finish]

N

haliday

(Cancel approved \\
J

Save changes

212

11.3.16View Holiday Calendar use case

Name:
View Holiday details

Description:
Staff member can view a calendar with the holiday of all any of the staff
members. The staff member can also configure the number of weeks to view.

Assumptions
* None

Preconditions
 None.

Post-conditions
* None

Normal flow of events — Staff member successfully view the holiday
calendar for all staff.

» The staff member clicks on view holiday calendar.

» The system retrieves the holidays requested, approved and taken for all
staff members.

» The staff member views the details then click the close button.

Alternative flow of events — Staff member successfully view the holiday
calendar for another staff member.

» The staff member clicks on view holiday calendar.

» The staff member selects the name of another staff member then submits

» The system retrieves the holidays requested, approved and taken for all
staff members.

» The staff member views the details then click the close button

Exception flow of events — The system fails retrieve the staff holidays due to
an error

» The staff member clicks on view holiday calendar.

» The staff member selects the name of another staff member then submits

* The system displays a message indicating an error has occurred.

Outstanding issues
None

213

Activity Diagrams

Staff Systerm

Initiate view haliday
calendar
(Select current periad)

(Select view type)
ﬁ Fetrieve requested,

Submit details approved, taken holidays
for all staff

Display holiday
calendar

214

11.3.17View / Update Tasks use case

Name:
View / Update Tasks

Description:
Staff member can view the tasks assigned to them by the system and can
update the task as set it as completed or delete it.

Assumptions
* None

Preconditions
« None.

Post-conditions
» After a staff member deletes a task, the task is removed from the system

Normal flow of events — Staff member successfully view their tasks.
» The staff member clicks on view tasks.

» The system retrieves all the tasks for the staff member.

* The staff member views the tasks then click the close button.

Alternative flow of events — Staff member successfully updates or delete
their task.

» The staff member clicks on view tasks.

* The system retrieves all the tasks for the staff member.

» The staff member selects one of the tasks and click ‘Set Complete’

» The system updates the task details and shows the task as completed.

» The staff member selects one of the tasks and click ‘Delete’

* The system deletes the task details and updates the list.

» The staff member then click the close button

Exception flow of events — The system fails retrieve the staff member tasks
due to an error

» The staff member clicks on view tasks.

* The system displays a message indicating an error has occurred.

Outstanding issues
None

215

Prototype

. = My Tasks

[{ j) Please action your task items below]

Set Campleted

7" Refresh All

216

11.4 Appendix D — Requirement Analysis Models

11.4.1Staff management communication diagrams

The communication diagrams for the Add staff, Edit staff and View staff use
cases is shown below.

==entity>>
Task

<=gntity=>
BankDetails
<=gntity==
LAddrese

EtErmploymentDetails) 16: setBankDetailsf
22 addTask) 17: sethddress(
4: getalistafembers) 13 createStafMember) 14: setUzern

’ > apntity=»
: Stafiember

9: createBankDetails()

21 createTask(T

8: createAddress(

20: saveStafiMember(

7: handleMewStafember()

—r
<=houndarys=
LAddStafl

<

5: startinterfaced)

6: createStafflember()

—>

==control=>
CAddStaftAction

LAdministrator

11: setlUserRoleq)
10: createUserd)
19: setGrade(

«=pntity==
‘User
18: setiorkStreami)

\ 12: createEmploymentDetails()

ﬁMIIUser sles(
==entity=>
1Role

3 getallGrades

1: getAllvorkStreams 0

<=ntity==
WWorkStream

<=antity==
Grade

Figure 81. Add staff communication diagram

<=entity=>

L EmploverentDetails

217

B: updateStaffemberDetails

—»

Adrministrator

1: getStafDetails)

==entity==
cUser

==entity==
:Raole

10: getUpdateAccessRules)

2 getdllUserRalesd / R

8 getlUzerRoled \

7. updateStafifdember(

9. dpdateDetails{userRole)
1: getStatemberd

N —»
==houndary== ==cantral== ==gntity==
: EditStafful : EditStaffAction : Stafiember
- Eaiotamti 4 LEdiolanAcian _otanMember
a: startlUl
JB: getAllWorkStremnsd
==gntity==
SorkStream
==gntity== 4: gethllGrades()
Grade _‘_‘_‘_‘_‘_'_'_‘_‘—'—-—-—._______ ==gntity==

Figure 82

WiewStafDetailsUl

<=<houndary=*

<=@ntity=>
‘User

: EmployermentDetails

. Edit Staff communication diagram

2 retrieveStafDetails)

—»

==contral==
“WiewStafDetailsAction

4: getUserRoleq

‘/

10: getDetails(

A

5. getStafemberg
3. getUser)
6: getStafemberDetailsForRoled

<=antity=>

: StafilemherDetail
9 createStafiMemberDetails(Saliemaertelals

—r

<=entity=>
:Role

Fi

-

7. getviewAccessRules(

<=entity=>
: Staffember

4

8: createCetailsForAccessRoles)

gure 83. View Staff Details

218

11.4.2Staff management analysis class diagram

The staff management analysis class diagram was composed by combining the
classes derived from the above communication diagrams

St o i2007 1
<<boundary> ~<control=> <<boundary= <<corol=> <<boundary>> <<corrol-> <<boundary- <<contiol>>
EdStaftUl EdiStaffction FindStafful FiStafTAction ViewStaffDetailsul ViewstafletailsAction

s |
: = L EINE e = | o [oemeer] [Cmme] o]
rausenumer: s e
-addressLinel String | ' onietds
string Qsiocatedal | - accountNumber: int
1 description : String
bankg with o
po— 1 <<enity=> 0 - username : String
| o ~locked boolean
i int - enabled : boolean
- lastName :int N o i
Wisassiney et ~gender char ! 1| + getUser(usemame - Sting) - User
Employmentbetals - workTelNo - String 5 online as B + getPassword(: String
~dateJoined - Date - homeTelNo - String +isLocke) - boolean
holigayEnttement: int + getRole0 :Role
* getworksreams0 Map * Sethdresso - v s A
o + fingstamember) : StafMernber etals restreied by B
Project. WorkStream holidayApprover : boolean
-idint 0.* 1 - description : String expensesApprover : boolean
- name : String name : String + getRole(roleld - String) : Role.

Figure 84. Staff management analysis class diagram

11.4.3Authentication and Authorisation communication diagram

=d Login 5

6: createllserSessiond

—»

1: laging 2 handleLaoging

— —>

==actar== =<houndarny== =<contral==

Staff : Staff LoginUl . LoginAction

3 getlserd)
/4: getUserRoled

A getRoleg

’ ==entity==

(Role

==ghtity==
cUser

Figure 85. Login communication diagram

219

11.4.4Authentication and Authorisation sequence diagram

==haundary== ==zcontral== «=entitys= ==entity==
staffiember | Staff loginindow : LoginUl loginAction : LaginAction user: User userRole : Raole

11.4.5Authentication and Authorisation analysis class diagram

[[

. _ [|

1: loging : void 1 |
1.1: hand|e

[
|
|
Login{username:String, passwordﬁtj_’ng) Swnid |
1-1.1: getUser{username:String; Uﬁﬂ]

1.1.2: getPassword(@ String o l
{____ﬂaisﬂﬁﬂ____jj

1113 checkPassword(

1.1.6: storelksarnSession{user:User : vaid

Figure 86. Authentication and Authorisation sequence diagram

11 B.1: getRoledroleld:String) Fhle

220

Started 2571172007 El

==paundary==

. ==contral==
LoginUl

LoginAction

- username : String

- password ; String + handleLogin{username : String, passwoard : String) © void
+ laging - vaid + storel)serinSession{user : User) void

==antity== ==gntity==
User Role

- username : String - roleld @ int
- password : String -viewAccessRules : Map
- lacked : boolean - updateAccessRules : Map
- enahled : hoolean - holidayApprover - hoolean
- persanalPhoto : String - expensesApprover D hoolean
- expensesApprover | Staffdember - accountant: hoolean
- holidayApprover - StafMember has a role p + getRolefroleld : String) : Role
+ getRoled : Role 0.x 1 + getviewhccessRules) Map
+ getlseriusername : String) : User + getUpdateAccessRules) : Map
+ getlnsuccessloginattemptsd © int +igAccountant) : hoolean
+ getPasswoard() © String +isHolidayApproverd) : boolean
+isLocked(: boolean + isExpensesApprover)) : hoalean
+ getExpensesAppravery | StaffMember + getExpensesStafflist) : List
+ getMnemaonicsd ; void + getHolidayStaffList() © List

+ getExpensesStatusesAllowed - Map

Figure 87. Authentication and Authorisation analysis class diagram

11.4.6Expenses management communication diagrams

<=pntity== =<gntity==
ExpenseType :Expenseltermn
3. getAllExpenseTypes() T
5.1.1: createCrllpdateExpense()
B submitExpensed) B.1: handleSubmitExpensel| —w
5 saveExpanse()) E.1.1: submitExpensed
. . 5.1: handleSaveExpense() 512 saveExpense()
1: submitPeriod{) 1.1: getExpenseFarPeriod)
1.1.1: getStaffExpenseForPeriod{saved)
% ==haundary== ==contral== > ==entity==
- Gtar :EditExpensesUl :EditExpensesAction . Expense
— <«
1.1.2: [found saved] populateExpensed)
513 updat? \‘4: uetProjects(
2 getnemonics() l
==gntity== ==enfity== ==gntity== ==gntity==
:ExpenseMnemonic User SwiorkStream :Project

Figure 88. Add/Edit expenses communication diagram

221

sd- Staff member
finds Expenses

a: [noOTExpenses] getExpensesPetiod)

<=entity=>

Expense

<=entity=>

 ExpensePeriod
12: displayviewCriteriag

> 7: getExpenses)
2. getRoled
11 setviewCriterial 1: getStafernber
—> —»
==houndary=>

==cantrol==
:FindExpensesAction

: Staff FindExpensesil

<<pntity=>
Expenseltarn

<=gntity=>
Staffiember

tStatusesAllowedForCurrgniRaole(

<«
10: startll)

3 isApproverOraccourtantg
4: [accountant = frue or approver = trug] getExpense sStafList)

==gntify==

9! getExpensesApprover] :Role

so- Accountant ar
Approver Finds expenses
for other staff member

22 [i1..noCfExpenses] getExpensesPeriod(

15 checkUserRoleAllowgd(
\

. »
v 20: getExpenses(
1
v 17 getRoled
\, 13: selectStafemberd) 14: getExpensesSummaryF orStaffl) 16: getStafiember)
'

==houndary==

==gontral==

- Appraver cFindExpensesiJ| FindExpenseshction

tity==
ember

23 stanuip
21: getExpensesPeriodsAllowed(

18: geiExpensesApprover)

<=antity=>
‘Rale

19: getStatusesAllowedForCurrentRoled)

Figure 89. Find Expenses communication diagram

222

<<p|

ity
xpenseltem

3: checkRoleAllowed()

—»

B 150
4. getExpenseStatus(

—»

2 getBxpenseDetails(

—»

1 displavExpenseDetails()

—»

==@ntity==
: ExpenseStatus

=<contral==

FindExpensesAction

<<entity>>
‘Expense

<zhoundarys=
FindExpensestl

. Staft

—»

4: [status=statuses allowed for role] getStaffExpenseFarPeriod ()

15: zaveExpensa] 14: setLastmodified()
16; submitRejectedExpensed 17: rejectBtaffExpensed 11: sethpproved) 19: getStatusirejected)
T submitapprovedBxpense) 8: approveStafiExpense() 10: getStafiExpenseForPeriod() 12 getStatus(approved)
==houndary== ==gontrol== ==gntity>> ==entity==
Aphrover hdExpensesUl FindExpensesAction Expense :ExpenseStatus
]
18: setRejected)
—»
a: checkRaleAllawed(13: setStatus(approved)
20: setStatus(rejectad)
28 saveExpensel)
25 setPaid() 28: setLastModified()
21 submitPaidExpensel 22 payStaffExpense() 24 getExpenseF orStaffi) 26: getStatus(paid)
—» — —» —»
=houndary== =<=gontral== <=@ntity=> <=entity==
Accountant Expense : ExpenseStatus

—»
27 setStatus(paid)

—»

23 checkRoleAllowed)

Figure 90. View Expenses communication diagram

223

11.4.7Expenses management analysis class diagram

<<houndary->
sul

==control>=

+ submitExpense :vaid
+ saveExpense(- void
+ submitPerion(- void
+ populateExpenseq :vaid

+ handleSubmitExpense) : void
+ handleSaveExpense() < void

+ getExpenseForPeriod) vaid

+ createOrUpdateExpense) [vaid

<<entity>
Expenseltem

- expenseDate Date

<<houndary->

<scontrol>>

indExpensesUl

+ setviewCriteria0 * woidt
+ displayviewGritaria0 * void

+ gelectStamember voi

+ displayExpenseDetails(: vaid
+ submitRejectedExpense(- void
+ submitApprovedExpense(- void
+ submitPaidExpensel) - void

+ getAlIExpeNseSPeriD | void

+ getExpensesSummaryF arstafiq - void
+ checkRolellowed() - void

+ getExpensesPeriadAllawed() vaid

+ getExpenseDetails(- vaid

+ rejectStafiExpensed) : void

+ approveStaTExpense0 | vaid

+ payStafExpense(: void

AExpensebtatusTy]

+ NEW : String
F5AVED Btring
FPENDING . Siring
+REJECTED . String.
+ APPROVED : String
FPAID String.

= statusld - int

“getStatusid(: int

- view expenses in

- accountant: hoolean

+ getRole(roleld : String) : Role
+ getviewAccessRules() : Map

+ getUpdateAcressRules () : Map
+isAccountanty) : boolean

+ isHalidayApprover(: boolean

+ IsExpensesAppIDver) : hoolean

+ getExpensesStanlList) : List

+ getHolidayStanList() : List

+ getExpensesStatusesAllowed(: Map

=<ntity=> - mnemonic : String <=entity=> <<ty
Project - type : ExpenseType ExpenseMnemonic
4 0.+ | - Deseription tring - name : Strin
-idint - type : String 1 0. I
- amourt : float
- - hashileage : boolean -tme : ExpenseType
::f:g‘“gm boolean haoked against - riles float N L Qo papuiates “mileage - foat
Kl - rejected : hoolean 0 1| +germypen : sting ~amount: int
- code : String - rejectionReason : Sting + isHasMileage(: boolean miles it
- isRejected : hoolean + getdliBxpenseTypes() : ExpenseType
- gelRejectionReason : String + update(void
+ getdmount() : void 0
+ gethiles(: void ebs!
1 <<enity=> ==entity=>
User
- int
consist of - username : String
- fitle : String - passwaord | Sting
1 - firstiame : int -locked : boolean
":Slmgrg:h‘”é) - enabled : boolean
<<anity=> - dateOrB ate - personalPhoto : Siring
Expense - nationalinsuranceNumber : int expensesapprover : Stamiember
- gender : char - holidayApprover : Stafember
e e g e
=<eny-> e Totitiionged voi - 1 | -nomeTeie ing + getUser(usemame : String) : User
ExpensePeriod | + getExpensaPeriod0 - ExpensePeriod - taxCode : String :EE‘U"Q“"“SL”S%‘V?:‘Q“W‘QO nt
year:int + getExpen sestatus 0 vaid “inccurred +setUser() - User , logs nmmgasb1 +ioLockedd - baolean
~month. int : Tonel Brponce *gelRoled - Role + BEtERpENSeSARproVert : StafiMember
- weekint + saveExpense() void + addTask) :void + getnemonicsQ ; void
+annroved(- void + getAllStamMembers) : List o
+ rejected) :void + getBankDetailsQ : void
+ selExpenseBiatus (status : ExpenseStatusTyne) - void + setAddress() void
+ pay(void + createStamiember(void
+ save() ;void + saveStafemberd : void
+ submity : void + petStaMMerninerstaa :inf) : StamMember
T g * updateDetails 0 void
+ findStanMember(: Stamiember
May be an ideato break D + getStafvMemberDetailsForRole() : void
down this class uging + createDetailsForAccessRoles() | void hag i’rm
generalisation i + gelExpenses(: Expense
is cyfentlyin
| v or
\ Aapproiwes
. detalls 1
<<enitys> 1 !
May be an idea to break
- status : ExpenseStatusType =<gntity=> dmrm this class using
- lasthiodified : Date Role
- datePaid : Date - oleld - int
“idcint ~viewccessRules : Map
+ setLasthlodified) : void - updateAccessRules : Map
+ Type) - status viewed by .| - noigayapprover - noolean
17| - expensesipprover : boolean

Figure 91. Expenses management analysis class diagrams

224

11.4.8Expenses state diagram

As expenses are transitioned from one state to another a state diagram was
constructed to model these transitions as shown below:

Rejacted

]

e

Mew I
Save
Saved L save
suhmit
Pending I -
J reject
approve
Approved]
pay
Faid

Figure 92. Expenses management analysis class diagrams

225

11.4.9Holiday management communication diagrams

Q 1.1.7.1: saveHolidayd
:TimeSheetitern >

2.1.2; cancelapprovedHoliday(dates) |_|

1.1.7: approveHoliday()
1.1.6: getHoliday(dates) ‘Holids

-

2: canceldpprovedHaliday) 1.1.4: getHolidavltemso\
% 1: approveReguestedHoliday)

LApprover “-m.,,‘ 21 processCancelApprovedHoliday(stafid)
\ 1.1: processApproveHolidayistafd)

—

1.1.2: getEmploymentDetailsd

==houndary== ==contral== "
: ; : -) —
UpdateHolidaylI UpdateHolidayAction - Ctafember
1.1.3: getHolidayEntitiement
1.1.1: checkAllowedToApproved _b
‘/ 1.1.4: checkMewReqguestallowed() \‘
2.1.1: checkHolidayStatus(

:Raole : EmployermentDetails

Figure 93. Approve/Cancel holiday communication diagram

1.1.2: getHalidaySummaryiyear)

: TimeShestt : i
imeSheetltern 1.1.1: getHalidaysiyear) ioTday
1 viewHoliday0 1.1.8: getHolidaylterns(T
Staff 1.1: getHolidayF arStafemberd
. 1.1.3: getEmploymentDetailsd
==paundary== ==contral== —P
2: selectStafiember(SyiewHolidayJl SViewHolidayAction - Staffember
1.1.8: setHolidays()))
1.1.9: [appraver=true] setStafList) | QA“ getHolidayEntitlementiyear)
: Appraver

“1.6: compareHalidayAndTimasheetd
1.1.7: [isHolidayApprover=true] getHolidayStafiListd /

- EmployementDetails

:Role

: HolidayEntitlernent

Figure 94. Request/Cancel holiday communication diagram

226

1 wiswHolidayCalendard

*Halida

1.1.1: getHolidaysF orAllStaffiyear)

1.1; getHolidayF orAll Staff()

==houndary==
iewiHalidayl|

I ==cahtral==
MiewHolidayAction - Stafember

[

—>

1.1.3: compareHolidayAndTimesheet()

1.1.4: setHolidays()

1.1.2: getHalidayltems(

Du

(TimeSheetltem

Figure 95. View holiday calendar communication diagram

2: cancelRegue stedHoliday)
1 reguesthewHoliday)

A

Staff
21 pro

=<haundary==
UpdateHalidayll

/

LApprover

EmployementDetails

1.1: processhlewHolidayReguest)

1.1.2: getHolidayEntitiementg

1.1.5.1: saveHoliday()

:TimeSheetitem

—»
2.1.2 cancelRequestedHoliday(dates) Q
+ Holida
1.1.5: requestMewHoliday(dates)

113 getHoHdayltemsO\

cessCancelHolidayRequest() 1.1.8: getUser)

1.1.8: addTaskitaskType)
111" getEmploymentDetails(

—r

1.1.8.1: createTask(]

—>

—»

==control==
UpdateHolidayAction

—»
1.1.4: checkNewRequestAllowed ()
2.1.1: checkHolidayStatus(

< Stafiermber Task

1.1.7: getHolidayAppraver)

o

Figure 96. View Holiday details communication diagram

227

11.4.10Holiday management analysis class diagram

==houndary=>
ViewHolidayUl

==gontrol==
ViewHolidayAction

==control==
UpdateHolidayAction

==houndary=>
UpdateHolidayUl

+viewHoliday) : vaid
+ selectStafMembery) : void
+ setHoliday) : void

+ getHolidayForStaffember() : void
- compareHolidayAndTimesheet() © void
+ getHolidayF orallStaf() - void

+ processCancelHolidayRequest(: void
+ processMewHolidayRequest() © void
- checkNewRequestallowed) void

+ getStaffList) : void
+viewHolidayCalendar() - void

<=entity=>
HolidaySummary

- takenHaliday : int 0.
- approvedHoliday : int)

- checkHolidayStatusd : waid
+ pracessCancelApprovedHolicay) : vaid
+ processApproveHoliday() - void

==enlity=>
Holiday

- date : Date
- fromear :int
- status : String

+ getHolidaySurmaryiyear : inf) : HolidaySurmmar

+ cancelReguestedHoliday() - void
+ requesthlewHaliday) ; void

+ cancelfpprovedHalicay) : waid

+ approveRequestedHoliday) void

<=gntity=>
TimeSheetitem
-id:int
- date : Dale
- hours ©int

- location : String
- comments : String

+ getTimesSheetiternsiemployeeld : inty : Map
+ saveTimeSheetlterns{emploveeld : int) : waid
ltemns(stafild - int, yeal

0.x

recorged by
A\

1

<=erity==
StaffMember

+ getallProjects) : Map

+ getHolidayEntitlementiyear :int) : HalidavEntitlerment

- requestedHaliday :int o creates + getHolidays(year . inf) : Maj
- remainingHaoliday - int + getHolidayF orallStaff) - Map
- saveHoliday) : void
+ getHolidays(- Map + cancelR equestedHoliday(dates © List) - void
+ getHaolidayEntittlement() - HolidayEntitlement I created for 0.t | + requestiewHolidayidates : List) : void
+ approveHoliday : woid
+ cancelApprovedHoliday() | void
-
refervpces oo
I ==gntity==
EmploymentDetails
==gntity== - datedoined : Date
HolidayEntitlement - emplovmentType : String
(10 1 - 1
- year:int _gzﬁaManﬁijg;r StafiMermber
- entittement : int o has i «has
- carryOver Cint + setWorkStreams() | void
- daysinLieu :int + setGrade() : void
+ getwarkStreams() - Map

<=entity=>
Task

- description : String
- completed : boolean
- type : String

+ createTask) void

-idint

- title - String

- firstMame : String

- lastMame : String

- dateOfBirth : Date

- nationallinsuranceMumber : String
- gender : char

- emailAddress : String
-workTelNo : String

- homeTelMo : String

- taxCode : String

+ setUser) : User

+getRole() - Role

+ addTask) : woid

+ gethllStafMembers§ : List

+ setBankDetails() | void

+ sethddress]) void

+ createStafember() vaid

+ saveStafdermberd : void

+ findStafMember(stafd . inty : StafMermber
+ updateDetails(: vaid

+ getStaffMemnberDetailsForRaled) : void

+ createDetailsForAccessRoles() | void

+ getExpenses() Expense

+ getEmploymentDetailsd : EmploymentDetails
+getser] : User

Figure 97. Holiday management analysis class diagram

228

11.5 Appendix E — Relational Database Model

Notations:
Bold Text Relational algebra elements
{} Comments

model OfficeMA
domains
TitleTypes = (Mr, Mrs, Sir, Miss) not allowed null
EmploymentTypes = (Contractor, Permanent) not allowed null
ExpensesStatusTypes = (Saved, Pending, Approved, Rejected, Paid) not
allowed null
HolidayStatusTypes = (Requested, Approved, Taken) not allowed null
GenderTypes = (Male, Female) not allowed null
RequiredString = string not allowed null
Requiredinteger = integer not allowed null

relation StaffMember
Staffld: integer
Dob: date not allowed null
EmailAddress: string
FirstName: RequiredString
LastName: RequiredString
Gender: GenderTypes
HomeTelNo: string
NiNumber: RequiredString
TaxCode: RequiredString
Title: TitleTypes
WorkTelNo: RequiredString
EmploymentDetailsid: string
Username: string
primary key Staffld
alternate key Employementld not allowed null
alternate key Username
alternate key NiNumber not allowed null
{logs online as}
foreign key Username references User
{has}
foreign key EmploymentDetailsld references EmploymentDetails (Id) not
allowed null
{represent mandatory participation with respect to banks with}
constraint (project StaffMember over Staffld) difference (project
BankAccount over Staffld) is empty
{represent mandatory participation with respect to lives at}

229

constraint (project StaffMember over Staffld) difference (project
HomeAddress over Staffld) is empty

relation BankAccount
AccountNumber: RequiredString
BankName: RequiredString
SortCode: RequiredString
Staffld: integer
primary key Staffld
{banks with}
foreign key Staffld references StaffMember on delete cascade

relation HomeAddress
AddressLine1: RequiredString
AddressLine2: string
Country: RequiredString
County: string
HouseName: string
HouseNumber: string
Locality: string
PostCode: RequiredString
Town: RequiredString
Staffld: integer
primary key Staffld
{lives at}
foreign key Staffld references StaffMember on delete cascade
{ Either house name or house number or both should be supplied }
constraint ((HouseName is not null) or (HouseNumber is not null))

relation Task
Id: integer
Completed: boolean not allowed null
DateCreated: timestamp not allowed null
Description: string
TaskType: string
Title: string
Staffld: integer
primary key Staffld
{has}
foreign key Staffld references StaffMember not allowed null on delete
cascade

relation User
Username: string
CanApproveExpenses: boolean not allowed null
CanApproveHolidays: boolean not allowed null

230

Locked: boolean not allowed null

Password: RequiredString

PersonalPhoto: string

UnsuccessfulLoginAttempts: integer not allowed null

Roleld: integer

ExpensesApproverStaffld: integer default 0

HolidayApproverStaffld: integer default 0

primary key Username

{approves expenses for}

foreign key ExpensesApproverStaffld references StaffMember not
allowed null on delete set default

{approves holidays for}

foreign key HolidayApproverStaffld references StaffMember (Staffld) not
allowed null on delete set default

{has role}

foreign key Roleld references Role not allowed null

{reflect mandatory participation with respect to logs online as}
constraint (project Users over Username) difference (project
StaffMember over Username) is empty

relation EmploymentDetails
Id: integer
DateJoined: date not allowed null
DatelLeft: date
EmploymentType: EmploymentTypes
HolidayEntitlement: integer
Salary: decimal
LineManagerStaffld: integer default 0
Gradeld: Requiredinteger
primary key Id
{is assigned}
foreign key Gradeld references Grade not allowed null
{has line manager}
foreign key LineManagerStaffld references StaffMember (Staffld) not
allowed null on delete set default
{reflect mandatory participation with respect to has}
constraint (project EmploymentDetails over Id) difference (project
StaffMember over EmploymentDetailsid) is empty

relation Grade
Id: Integer
Code: RequiredString
MaximumSalary: decimal
MinimumSalary: decimal
Name: string
primary key Id

231

alternate key Code not allowed null
alternate key Name not allowed nuli

relation EmploymentDetailsWorkStream
EmploymentDetailsid: integer
WorkStreamsld: integer
{being part of the primary key reflects the mandatory participation condition
with regards to perform work and works for}
primary key (EmploymentDetailsld, WorkStreamsld)
{perform work}
foreign key EmployementDetailsld references EmploymentDetails (Id) on
delete cascade
{works for}
foreign key WorkStreamsld references WorkStreams(ld) on delete
cascade

relation Project
Id: integer
Code: string
Description: string
Name: string
WorkStreamld: integer
primary key id
alternate key Code not allowed null
alternate key Name not allowed null
{contains}
foreign key WorkStreamld references WorkStream (id) not allowed null
on delete cascade

relation WorkStream
Id: integer
Description: string
Name: string
primary key Id
alternate key Name not allowed null

relation Role
RoleType: string
Roleld: integer
primary key Roleld
alternate key RoleType not allowed null

relation ViewableExpensesStatuses
Roleld: integer
StatusName: string
primary key (Roleld, StatusName)

232

{view expenses in}
foreign key Roleld references Role on delete cascade

relation ViewableStaffDetails
Roleld: integer
FieldName: string
primary key (Roleld, FieldName)
{view staff details in}
foreign key Roleld references Role on delete cascade

relation UpdateableStaffDetails
Roleld: integer
FieldName: string
primary key (Roleld, FieldName)
{update staff details in}
foreign key Roleld references Role on delete cascade

relation HolidayYear
Id: integer
CarryOver: integer
DayslnLieu: integer
Entitlement: Requiredinteger
HolidayYear: Requiredinteger
Staffld: Requiredinteger
primary key Id
{ Each StaffMember participate with the HolidayYear only once for each
value HolidayYear attribute }
alternate key (Staffld, HolidayYear)
{takes}
foreign key Staffld references StaffMember on delete cascade

relation Holiday
Id: integer
AfterNoon: boolean not allowed null
BookedDate: date not allowed null
FromYear: Requiredinteger
FullDay: boolean not allowed null
Status: HolidayStatusTypes
HolidayYearld: Requiredinteger
primary key Id
{Only one Holiday should be booked by any employee for the same day}
alternate key (BookedDate, HolidayYearld)
{has}
foreign key HolidayYearld references HolidayYear (Id) on delete cascade

relation Expenses

233

Id: integer

DatePaid: date

StatusLastModified: timestamp not allowed null

Status: ExpensesStatusTypes

ExpensesMonth: Requiredinteger

ExpensesWeek: Requiredinteger

ExpensesYear: RequiredInteger

Staffld: Requiredinteger

primary key Id

{Each StaffMember participate with the Expenses entity only once for each
value of ExpensesMonth, ExpensesWeek and ExpensesYear}

alternate key (Staffld, ExpensesYear, ExpensesMonth, ExpensesWeek)
{books}

foreign key Staffld references StaffMember on delete cascade

relation Expensesltem
Id: integer
Amount: decimal not allowed null
Description: string
ExpensesDate: date not allowed null
Miles: decimal
Mnemonic: string
Rejected: boolean not allowed null
RejectionReason: string
ExpensesCategoryld: Requiredinteger
Expensesld: Requiredinteger
primary key Id
{booked against}
foreign key ExpensesCategoryld references ExpensesCategory
{consist of}
foreign key Expensesld reference Expenses on delete cascade

relation ExpensesCategory
Id: integer
Category: RequiredString
HasMileage: boolean not allowed null
primary key Id
alternate key Category

relation ExpensesMnemonic
Name: RequiredString
Amount: decimal
Mileage: decimal
ExpensesCategoryld: Requiredinteger
Username: RequiredString
primary key Name

234

{stored for}

foreign key ExpensesCategoryld references ExpensesCategory(ld)
{entered}

foreign key Username references User on delete cascade
{ExpensesMnemonic must have an amount or mileage or both}
constraint ((Amount is not null) or (Mileage is not null))

relation MileageCost
Id: integer
Cost: decimal not allowed null
LowerLimit: decimal not allowed null
UpperLimit: decimal not allowed null
ExpensesCategoryld: Requiredinteger
primary key Id
{has}
foreign key ExpensesCategoryld references ExpensesCategory(ld) on
delete cascade

235

11.6 Appendix F — Physical database schema

Office Managment Application PostgreSQL schema definitions --
Author: Omer Dawelbeit

-— Drop all the Foreign keys

ALTER TABLE staff member DROP CONSTRAINT
ALTER TABLE staff member DROP CONSTRAINT
fk staff member employment details;
ALTER TABLE bank account DROP CONSTRAINT fk bank account staff member;
ALTER TABLE home address DROP CONSTRAINT fk home address staff member;
ALTER TABLE task DROP CONSTRAINT fk task staff member;

ALTER TABLE users DROP CONSTRAINT fk users roles;

ALTER TABLE users DROP CONSTRAINT fk users staff member 1;

ALTER TABLE users DROP CONSTRAINT fk users staff member 2;

ALTER TABLE employment details DROP CONSTRAINT

fk employment details staff member;

ALTER TABLE employment details DROP CONSTRAINT

fk _employment details grade;

ALTER TABLE employment details workstream DROP CONSTRAINT

fk employment details workstream workstream;

ALTER TABLE employment details workstream DROP CONSTRAINT

fk employment details workstream employment details;

ALTER TABLE project DROP CONSTRAINT fk project workstream;

ALTER TABLE role update staff details DROP CONSTRAINT

fk update staff details role;

ALTER TABLE role view staff details DROP CONSTRAINT

fk view staff details role;

ALTER TABLE role allowed expenses statuses DROP CONSTRAINT

fk expenses statuses role;

fk staff member users;

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

fk expenses

ALTER TABLE
ALTER TABLE

fk expenses

ALTER TABLE

fk expenses |

ALTER TABLE

holiday year DROP CONSTRAINT fk holiday year staff member;
holiday DROP CONSTRAINT fk holiday holiday year;
expenses DROP CONSTRAINT fk expenses staff member;
expenses item DROP CONSTRAINT fk expenses item expenses;
expenses_ item DROP CONSTRAINT

item expeneses category;

expenses_item DROP CONSTRAINT fk expenses item project;
expenses mnemonic DROP CONSTRAINT

mnemonic_expeneses category;

expenses_mnemonic DROP CONSTRAINT

mnemonic users;

mileage cost DROP CONSTRAINT

fk mileage cost expenses category;

-- Drop all
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

the primary keys

mileage cost DROP CONSTRAINT mileage cost pkey;
expenses DROP CONSTRAINT expenses pkey;

staff member DROP CONSTRAINT staff member pkey;
employment details workstream DROP CONSTRAINT

employment details workstream pkey;

ALTER TABLE
ALTER TABLE
ALTER TABLE

users DROP CONSTRAINT users_pkey;
bank account DROP CONSTRAINT bank account pkey;
expenses mnemonic DROP CONSTRAINT expenses mnemonic pkey;

236

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
role view staff details pkey ;

ALTER TABLE role update staff details DROP CONSTRAINT

role update staff details pkey;

ALTER TABLE role allowed expenses statuses DROP CONSTRAINT
role allowed expenses statuses pkey;

workstream DROP CONSTRAINT workstream pkey;

roles DROP CONSTRAINT roles pkey;

expenses_item DROP CONSTRAINT expenses item pkey;

project DROP CONSTRAINT project pkey;

grade DROP CONSTRAINT grade pkey;

expenses_category DROP CONSTRAINT expenses category pkey;
task DROP CONSTRAINT task pkey;

home address DROP CONSTRAINT home address pkey;
employment details DROP CONSTRAINT employment details pkey;
holiday year DROP CONSTRAINT holiday year pkey;

holiday DROP CONSTRAINT holiday pkey;

role view staff details DROP CONSTRAINT

-— Drop all the alternate keys

ALTER TABLE staff member DROP CONSTRAINT
staff member employmentdetails id key;
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
expenses_ category category key;

-—- Drop the
ALTER TABLE
ALTER TABLE
ALTER TABLE

-- Drop the
DROP TRIGGER mileage cost check ON mileage cost;
DROP FUNCTION mileage cost check();

staff member DROP CONSTRAINT staff member username key;
staff member DROP CONSTRAINT staff member ni number key;
grade DROP CONSTRAINT grade code key;

grade DROP CONSTRAINT grade name key;

project DROP CONSTRAINT project code key;

project DROP CONSTRAINT project name key;

workstream DROP CONSTRAINT workstream name key;

roles DROP CONSTRAINT roles role type key;

holiday year DROP CONSTRAINT holiday year staff id key;
holiday DROP CONSTRAINT holiday holiday year key;
expenses DROP CONSTRAINT expenses staff id key;
expenses category DROP CONSTRAINT

check constraints

home address DROP CONSTRAINT home address check;

expenses _mnemonic DROP CONSTRAINT expenses mnemonic_ check;
expenses item DROP CONSTRAINT expenses item check;

triggers and functions

DROP TRIGGER users check ON staff member;
DROP FUNCTION users check();

-— Drop all the tables

DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

roles;

grade;

expenses_mnemonic;

holiday year;

project;

expenses_item;

role allowed expenses statuses;
users;

expenses category;

237

DROP TABLE role update staff details;
DROP TABLE mileage cost;

DROP TABLE task;

DROP TABLE holiday;

DROP TABLE employment details;

DROP TABLE workstream;

DROP TABLE home address;

DROP TABLE expenses;

DROP TABLE employment details workstream;
DROP TABLE role view staff details;
DROP TABLE staff member;

DROP TABLE bank account;

-—- Drop the sequences
DROP SEQUENCE hibernate sequence;

-- Drop the domains

DROP DOMAIN titletypes;

DROP DOMAIN employmenttypes;
DROP DOMAIN expensesstatustypes;
DROP DOMAIN holidaystatustypes;
DROP DOMAIN gendertypes;

-— Schema domain definitions
CREATE DOMAIN titletypes
AS VARCHAR (10) NOT NULL
CHECK (VALUE IN ('Mr', 'Mrs', 'Sir', 'Miss'));

CREATE DOMAIN employmenttypes
AS VARCHAR (10) NOT NULL
CHECK (VALUE IN ('Contractor', 'Permanent'));

CREATE DOMAIN expensesstatustypes
AS VARCHAR (10) NOT NULL
CHECK (VALUE IN ('Saved', 'Pending', 'Approved', 'Rejected',6 'Paid'));

CREATE DOMAIN holidaystatustypes
AS VARCHAR(10) NOT NULL
CHECK (VALUE IN ('Requested', 'Approved', 'Taken')):;

CREATE DOMAIN gendertypes
AS VARCHAR(10) NOT NULL
CHECK (VALUE IN ('Male', 'Female')):;

-- Hibernate sequence used to auto-generate surrogate primary keys
CREATE SEQUENCE hibernate sequence

INCREMENT 1

MINVALUE 10

MAXVALUE 9223372036854775807

START 71

CACHE 1;

-— Table definition statements

CREATE TABLE staff member (
staff_id INTEGER NOT NULL,
dob DATE NOT NULL,
emailaddress VARCHAR (255),

238

);

first name VARCHAR (255) NOT NULL,
gender gendertypes,

hometelno VARCHAR (255),

last name VARCHAR (255) NOT NULL,

ni number VARCHAR (255) NOT NULL,

tax code VARCHAR(255) NOT NULL,

title titletypes,

worktelno VARCHAR (255) NOT NULL,
username VARCHAR (255),
employmentdetails id INTEGER NOT NULL

CREATE TABLE bank account (

);

account number VARCHAR (255) NOT NULL,
bank name VARCHAR(255) NOT NULL,

sort code VARCHAR (255) NOT NULL,
staff id INTEGER NOT NULL

CREATE TABLE home address (

);

address linel VARCHAR(255) NOT NULL,
address line2 VARCHAR(255),

country VARCHAR(8) NOT NULL,

county VARCHAR (255),

house name VARCHAR (255),

house number VARCHAR (255),

locality VARCHAR (255),

post code VARCHAR (255) NOT NULL,
town VARCHAR (255) NOT NULL,

staff_id INTEGER NOT NULL

CREATE TABLE task (

) ;

CREATE TABLE

) ;

id INTEGER NOT NULL,

completed BOOL NOT NULL,
datecreated TIMESTAMP NOT NULL,
description VARCHAR (255),
tasktype VARCHAR (255),

title VARCHAR (255),

Staff_id INTEGER NOT NULL

users (
username VARCHAR (255) NOT NULL,
canapproveexpenses BOOL NOT NULL,
canapproveholidays BOOL NOT NULL,
locked BOOL NOT NULL,
password VARCHAR (255) NOT NULL,
personalphoto VARCHAR (255),
unsuccessfulloginattempts INTEGER NOT NULL,
role id INTEGER NOT NULL,
expensesapprover staff id INTEGER NOT NULL DEFAULT 1,
holidayapprover staff id INTEGER NOT NULL DEFAULT 1

CREATE TABLE employment details (

id INTEGER NOT NULL,

239

datejoined DATE NOT NULL,

dateleft DATE,

employmenttype employmenttypes,
holidayentitlement INTEGER,

salary NUMERIC(19 , 2),

grade_id INTEGER NOT NULL,

linemanager staff id INTEGER NOT NULL DEFAULT 1

);

CREATE TABLE grade (
id INTEGER NOT NULL,
code VARCHAR (255) NOT NULL,
maximumsalary NUMERIC (19 , 2),
minimumsalary NUMERIC (19 , 2),
name VARCHAR (255) NOT NULL

) ;

CREATE TABLE employment details workstream (
employment details id INTEGER NOT NULL,
workstreams_id INTEGER NOT NULL

);

CREATE TABLE project (
id INTEGER NOT NULL,
code VARCHAR (255) NOT NULL,
description VARCHAR (255),
name VARCHAR (255) NOT NULL,
workstream_id INTEGER NOT NULL

) ;

CREATE TABLE workstream (
id INTEGER NOT NULL,
description VARCHAR (255),
name VARCHAR (255) NOT NULL

);

CREATE TABLE roles (
role type VARCHAR(31) NOT NULL,
role id INTEGER NOT NULL

) ;

CREATE TABLE role view staff details (
role_id INTEGER NOT NULL,
field name VARCHAR (255)

);

CREATE TABLE role update staff details (
role id INTEGER NOT NULL,
field name VARCHAR (255)

)7

CREATE TABLE role allowed expenses statuses (
role id INTEGER NOT NULL,
status name VARCHAR (255)

);

CREATE TABLE holiday year (

240

id INTEGER NOT NULL,

carry over INTEGER,
days in lieu INTEGER,
entitlement INTEGER NOT NULL,
holiday year INTEGER NOT NULL,
staff id INTEGER NOT NULL

);

CREATE TABLE holiday (
id INTEGER NOT NULL,
after noon BOOL NOT NULL,
booked date DATE NOT NULL,
from year INTEGER NOT NULL,
full day BOOL NOT NULL,
status holidaystatustypes,
holiday year id INTEGER NOT NULL
) ;

CREATE TABLE expenses (
id INTEGER NOT NULL,
date paid DATE,
status last modified TIMESTAMP NOT NULL,
status expensesstatustypes,
expenses month INTEGER NOT NULL,
expenses week INTEGER NOT NULL,
expenses_ year INTEGER NOT NULL,
staff id INTEGER NOT NULL
) ;

CREATE TABLE expenses_item (
id INTEGER NOT NULL,
amount NUMERIC (19 , 2),
description VARCHAR (255),
expense date DATE NOT NULL,
miles NUMERIC (19 , 2),
mnemonic VARCHAR (255),
rejected BOOL NOT NULL,
rejection reason VARCHAR(255),
project id INTEGER,
expeneses category id INTEGER NOT NULL,
expenses_id INTEGER NOT NULL

)

CREATE TABLE expenses_category (
id INTEGER NOT NULL,
expenses_ type VARCHAR (255) NOT NULL,
hasmileage BOOL NOT NULL
) ;

CREATE TABLE expenses mnemonic (
name VARCHAR (255) NOT NULL,
amount NUMERIC (19 , 2),
mileage NUMERIC (19 , 2),
expeneses_ category id INTEGER NOT NULL,
username VARCHAR (255) NOT NULL

241

CREATE TABLE mileage cost (

);

id INTEGER NOT NULL,

cost NUMERIC (19 , 2) NOT NULL,
lower limit NUMERIC (19 , 2) NOT NULL,
upper limit NUMERIC(1S9 , 2) NOT NULL,

expenses_category id INTEGER

-- primary key constraints

ALTER TABLE
(1d) ;

ALTER TABLE
ALTER TABLE
(staff _id);
ALTER TABLE

mileage cost ADD CONSTRAINT mileage cost pkey PRIMARY KEY

expenses ADD CONSTRAINT expenses pkey PRIMARY KEY (id);
staff member ADD CONSTRAINT staff member pkey PRIMARY KEY

employment details workstream ADD CONSTRAINT

employment details workstream pkey PRIMARY KEY (employment details id,

workstreams

ALTER TABLE
ALTER TABLE
(staff _id);
ALTER TABLE
PRIMARY KEY
ALTER TABLE
ALTER TABLE
ALTER TABLE
(id) ;
ALTER
ALTER TABLE
ALTER TABLE
PRIMARY KEY
ALTER TABLE
ALTER TABLE
(staff _id);
ALTER TABLE
PRIMARY KEY
ALTER TABLE
(id);

ALTER TABLE
ALTER TABLE

TABLE

role view staff details pkey PRIMARY KEY (role id,

ALTER TABLE

role update

ALTER TABLE

role allowed expenses statuses pkey PRIMARY KEY (role id,

id);
users ADD CONSTRAINT users pkey PRIMARY KEY (username);
bank account ADD CONSTRAINT bank account pkey PRIMARY KEY

expenses mnemonic ADD CONSTRAINT expenses mnemonic pkey
(name) ;

workstream ADD CONSTRAINT workstream pkey PRIMARY KEY
roles ADD CONSTRAINT roles pkey PRIMARY KEY (role id);
expenses item ADD CONSTRAINT expenses item pkey PRIMARY KEY

(id);

project ADD CONSTRAINT project pkey PRIMARY KEY (id);
grade ADD CONSTRAINT grade pkey PRIMARY KEY (id);
expenses category ADD CONSTRAINT expenses category pkey
(id);

task ADD CONSTRAINT task pkey PRIMARY KEY (id);

home address ADD CONSTRAINT home address pkey PRIMARY KEY

employment details ADD CONSTRAINT employment details pkey
(id) ;
holiday year ADD CONSTRAINT holiday year pkey PRIMARY KEY

holiday ADD CONSTRAINT holiday pkey PRIMARY KEY
role view staff details ADD CONSTRAINT

(id);

field name);

role update staff details ADD CONSTRAINT

staff details pkey PRIMARY KEY (role id, field name);

role allowed expenses statuses ADD CONSTRAINT

status_name) ;

-— Alternate key constraints

ALTER TABLE

staff member employmentdetails id key UNIQUE

ALTER TABLE
(username) ;
ALTER TABLE
UNIQUE
ALTER
ALTER
ALTER
ALTER
ALTER

TABLE
TABLE
TABLE
TABLE
TABLE

staff member ADD CONSTRAINT
_ (employmentdetails id);
staff member ADD CONSTRAINT staff member username key UNIQUE

staff member ADD CONSTRAINT staff member ni number key

(ni number) ;

grade ADD CONSTRAINT grade code key UNIQUE (code);
grade ADD CONSTRAINT grade name key UNIQUE (name);
project ADD CONSTRAINT project code key UNIQUE (code);
project ADD CONSTRAINT project name key UNIQUE (name)

workstream ADD CONSTRAINT workstream name key UNIQUE (name);

242

ALTER TABLE roles ADD CONSTRAINT roles role type key UNIQUE (role type);
ALTER TABLE holiday year ADD CONSTRAINT holiday year staff id key UNIQUE
(staff id, holiday year);

ALTER TABLE holiday ADD CONSTRAINT holiday holiday year key UNIQUE
(holiday year id, booked date);

ALTER TABLE expenses ADD CONSTRAINT expenses staff id key UNIQUE

(staff id, expenses_ year, expenses month, expenses week);

ALTER TABLE expenses category ADD CONSTRAINT

expenses_category category key UNIQUE (expenses_type);

-—- Create default data before creating referential constraints

-— Default Grades

INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(1, 'sc', 52000.00, 42000.00, 'Senior Consultant');

INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(2, 'c', 41999.00, 32000.00, 'Consultant');

INSERT INTO grade (id, code, maximumsalary, minimumsalary, name) VALUES
(3, 'pPC', 62000.00, 52000.00, 'Principal Consultant');

-—- Default Roles

INSERT INTO roles (role type, role id) VALUES ('Accountant',6 1);
INSERT INTO roles (role type, role id) VALUES ('Administrator', 2);
INSERT INTO roles (role type, role id) VALUES ('Regularstaff', 3);

-—- Default Administrator (admin/officema)
INSERT INTO staff member (staff id, dob, emailaddress, first name,
gender, hometelno, last name, ni number, tax code, title,

worktelno, username, employmentdetails id)

VALUES (1, '2008-01-20', NULL, 'Admin', 'Male', NULL, 'Admin',
TXXXXXXX', 'XXX', 'Mr', '0000000000', 'admin', 1);

INSERT INTO employment details (id, datejoined, dateleft,
employmenttype, salary, linemanager staff id, grade id,
holidayentitlement)

VALUES (1, '2008-01-20', NULL, 'Permanent', 0.00, 1, 1, 0);
INSERT INTO users (username, canapproveexpenses, canapproveholidays,
locked, "password", personalphoto, unsuccessfulloginattempts,

holidayapprover staff id, expensesapprover staff id, role id)

VALUES ('admin', true, true, false, 'sxd7SM1aOHyxGCt2bvFE3jw==',
NULL, 0, 1, 1, 2);

INSERT INTO bank account (account number, bank name, sort code,

staff id) VALUES ('AC5Ivg3PGmMcxOM20FCpFA==",
'zN3paiWMI9tZwC9IsMEwpwg==", 'yewjnIn286k=', 1);

INSERT INTO home_ address (address linel, address line2, country, county,
house name, house number, locality, post code, town, staff id) VALUES
('Some Road', NULL, 'UK', NULL, NULL, 'l', NULL, 'AAl 1AA', 'Town', 1);

-- Foreign key constraints

ALTER TABLE staff member ADD CONSTRAINT fk staff member users FOREIGN
KEY (username) REFERENCES users (username);

ALTER TABLE staff member ADD CONSTRAINT

fk staff member employment details FOREIGN KEY (employmentdetails id)
REFERENCES employment details (id);

ALTER TABLE bank account ADD CONSTRAINT fk bank account staff member
FOREIGN KEY (staff id) REFERENCES staff member (staff id) ON DELETE
CASCADE;

ALTER TABLE home address ADD CONSTRAINT fk home address staff member

FOREIGN KEY (staff id) REFERENCES staff member (staff id) ON DELETE

243

CASCADE;

ALTER TABLE task ADD CONSTRAINT fk task staff member FOREIGN KEY

(staff id) REFERENCES staff member (staff id) ON DELETE CASCADE;

ALTER TABLE users ADD CONSTRAINT fk users roles FOREIGN KEY (role id)
REFERENCES roles (role_ id);

ALTER TABLE users ADD CONSTRAINT fk users staff member 1 FOREIGN KEY
(holidayapprover staff id) REFERENCES staff member (staff id) ON DELETE
SET DEFAULT;

ALTER TABLE users ADD CONSTRAINT fk users staff member 2 FOREIGN KEY
(expensesapprover staff id) REFERENCES staff member (staff id) ON DELETE
SET DEFAULT;

ALTER TABLE employment details ADD CONSTRAINT

fk _employment details staff member FOREIGN KEY (linemanager staff id)
REFERENCES staff member (staff id) ON DELETE SET DEFAULT;

ALTER TABLE employment details ADD CONSTRAINT

fk employment details grade FOREIGN KEY (grade id) REFERENCES grade
(id) ;

ALTER TABLE employment details workstream ADD CONSTRAINT

fk _employment details workstream workstream FOREIGN KEY (workstreams id)
REFERENCES workstream (id) ON DELETE CASCADE;

ALTER TABLE employment details workstream ADD CONSTRAINT

fk employment details workstream employment details FOREIGN KEY
(employment details id) REFERENCES employment details (id) ON DELETE
CASCADE;

ALTER TABLE project ADD CONSTRAINT fk project workstream FOREIGN KEY
(workstream_id) REFERENCES workstream (id) ON DELETE CASCADE;

ALTER TABLE role update staff details ADD CONSTRAINT

fk update staff details role FOREIGN KEY (role id) REFERENCES roles
(role id) ON DELETE CASCADE;

ALTER TABLE role view staff details ADD CONSTRAINT

fk view staff details role FOREIGN KEY (role id) REFERENCES roles

(role id) ON DELETE CASCADE;

ALTER TABLE role allowed expenses statuses ADD CONSTRAINT

fk _expenses statuses role FOREIGN KEY (role id) REFERENCES roles

(role id) ON DELETE CASCADE;

ALTER TABLE holiday year ADD CONSTRAINT fk holiday year staff member
FOREIGN KEY (staff id) REFERENCES staff member (staff id) ON DELETE
CASCADE;

ALTER TABLE holiday ADD CONSTRAINT fk holiday holiday year FOREIGN KEY
(holiday year id) REFERENCES holiday year (id) ON DELETE CASCADE;
ALTER TABLE expenses ADD CONSTRAINT fk expenses staff member FOREIGN KEY
(staff id) REFERENCES staff member (staff id) ON DELETE CASCADE;

ALTER TABLE expenses_ item ADD CONSTRAINT fk expenses item expenses
FOREIGN KEY (expenses_id) REFERENCES expenses (id) ON DELETE CASCADE;
ALTER TABLE expenses item ADD CONSTRAINT

fk expenses item expeneses category FOREIGN KEY (expeneses category id)
REFERENCES expenses_category (id);

ALTER TABLE expenses_item ADD CONSTRAINT fk expenses item project
FOREIGN KEY (project id) REFERENCES project (id);

ALTER TABLE expenses mnemonic ADD CONSTRAINT

fk _expenses mnemonic_expeneses category FOREIGN KEY

(expeneses category id) REFERENCES expenses category (id);

ALTER TABLE expenses mnemonic ADD CONSTRAINT fk expenses mnemonic_users
FOREIGN KEY (username) REFERENCES users (username) ON DELETE CASCADE;
ALTER TABLE mileage cost ADD CONSTRAINT

fk mileage cost expenses category FOREIGN KEY (expenses category id)
REFERENCES expenses category (id) ON DELETE CASCADE;

244

—-— Check constraints definitions

ALTER TABLE home address ADD CONSTRAINT home address check CHECK
(house name IS NOT NULL OR house number IS NOT NULL) ;

ALTER TABLE expenses mnemonic ADD CONSTRAINT expenses mnemonic check
CHECK (mileage IS NOT NULL OR amount IS NOT NULL) ;

ALTER TABLE expenses_ item ADD CONSTRAINT expenses item check CHECK
(miles IS NOT NULL OR amount IS NOT NULL) ;

-- Triggers and functions definitions
CREATE FUNCTION mileage cost check() RETURNS trigger AS
$mileage cost check$
BEGIN
IF (TG _OP = 'UPDATE') THEN
IF EXISTS (SELECT * FROM mileage cost AS MC
WHERE (MC.lower limit <= NEW.lower limit) AND
(MC.upper limit >= NEW.lower limit) AND
(MC.id != NEW.id) AND
(MC.expenses category id =
NEW.expenses category id)
)
THEN
RAISE EXCEPTION '3 lower limit already exists',
NEW.lower limit;
END IF;

IF EXISTS (SELECT * FROM mileage cost AS MC
WHERE (MC.lower limit <= NEW.upper limit) AND
(MC.upper limit >= NEW.upper limit) AND
(MC.id != NEW.id) AND
(MC.expenses category id =
NEW.expenses category id)
)
THEN
RAISE EXCEPTION '% upper limit already exists',
NEW.upper limit;
END IF;
ELSIF (TG _OP = 'INSERT') THEN
IF EXISTS (SELECT * FROM mileage cost AS MC
WHERE (MC.lower limit <= NEW.lower limit) AND
(MC.upper limit >= NEW.lower limit) AND
(MC.expenses category id =
NEW.expenses category id)
)
THEN
RAISE EXCEPTION '% lower limit already exists',
NEW.lower limit;
END IF;

IF EXISTS (SELECT * FROM mileage cost AS MC
WHERE (MC.lower limit <= NEW.upper limit) AND
(MC.upper limit >= NEW.upper limit) AND
(MC.expenses category id =
NEW.expenses category id)
)
THEN
RAISE EXCEPTION '% upper limit already exists',

245

NEW.upper limit;
END IF;
END IF;
RETURN new;
END;

Smileage cost check$ LANGUAGE plpgsql;

CREATE FUNCTION users check() RETURNS trigger AS Susers check$
BEGIN
IF (TG _OpP = 'UPDATE') THEN
IF ((NEW.username IS NULL) AND EXISTS (SELECT * FROM users WHERE
(users.username = OLD.username)))
THEN
DELETE FROM users WHERE (users.username = OLD.username) ;
END IF;
END IF;
RETURN new;
END;

Susers check$ LANGUAGE plpgsqgl;

CREATE TRIGGER mileage cost check
BEFORE INSERT OR UPDATE ON mileage cost
FOR EACH ROW
EXECUTE PROCEDURE mileage cost check();

CREATE TRIGGER users check
AFTER UPDATE ON staff member
FOR EACH ROW
EXECUTE PROCEDURE users check();

246

11.7 Appendix G — Sample ORM SQL queries

The queries below are used to load the object graph of a StaffMember instance

select staffmembe(0 .staff id as staffl 12 , staffmembelO .dob as dobl2 ,
staffmembel .emailAddress as emailAdd3 12 ,
staffmembe0 .employmentDetails id as employml3 12 ,
staffmembeO .first name as first4 12 , staffmembeO .gender as genderl2 ,
staffmembel .homeTelNo as homeTelNol2 , staffmembeO .last name as
last7 12 , staffmembe(0 .ni number as ni8 12 , staffmembel .tax code as
tax9 12 , staffmembe(0 .title as titlel2 , staffmembe0 .username as
usernamel2 , staffmembe0 .workTelNo as workTelNol2 ,
staffmembeO 1 .account number as accountl 14 , staffmembe(O 1 .bank name
as bank2 14 , staffmembeO 1 .sort code as sort3 14 ,
staffmembe0 2 .address linel as addressl 13 ,
staffmembe0 2 .address line2 as address2 13 , staffmembeO 2 .country as
countryl3 , staffmembeO 2 .county as countyl3 ,
staffmembe0 2 .house name as house5 13 , staffmembe0 2 .house number as
house6 13 , staffmembe0 2 .locality as localityl3 ,
staffmembe0 2 .post code as post8 13 , staffmembel0 2 .town as townl3

from staff member staffmembel

left outer join bank account staffmembeO 1 on

staffmembel .staff id=staffmembe0 1 .staff id

left outer join home address staffmembe0 2 on
staffmembel .staff id=staffmembe0 2 .staff id

where staffmembel .username=?

select employment(O .id as id9 12 , employmentO .dateJoined as
dateJoinedS9 12 , employmentO .dateLeft as datelLeft9 12 ,

employmentO .employmentType as employmed4 9 12 , employmentO .grade id as
grade7 9 12 , employmentO .holidayEntitlement as holidayE5 9 12 ,
employment(O .lineManager staff id as lineMana8 9 12 ,

employmentO .salary as salary9 12 , gradel .id as 1dl0_0 , gradel .code
as codel0 0 , gradel .maximumSalary as maximumS3 10 0 ,

gradel .minimumSalary as minimumS4 10 0 , gradel .name as namelO O ,
staffmembe2 .staff id as staffl 12 1 , staffmembe2 .dob as dobl2 1 ,
staffmembe? .emailAddress as emailAdd3 12 1 ,

staffmembe? .employmentDetails id as employml3 12 1 ,

staffmembe? .first name as firstd4 12 1 , staffmembeZ .gender as
genderl2 1 , staffmembeZ .homeTelNo as homeTelNol2 1 ,
staffmembe? .last name as last7 12 1 , staffmembe2 .ni number as
nig8 12 1 , staffmembe2 .tax code as tax9 12 1 , staffmembe2 .title as
titlel2 1 , staffmembe2 .username as usernamel2 1 ,

staffmembe? .workTelNo as workTelNol2 1 , staffmembe2 1 .account number
as accountl 14 1 , staffmembe2 1 .bank name as bank2 14 1 ,
staffmembe2 1 .sort code as sort3 14 1 , staffmembe2 2 .address linel as
addressl 13 1 , staffmembe2 2 .address line2 as address2 13 1 ,
staffmembe2 2 .country as countryl3 1 , staffmembe2 2 .county as
countyl3 1 , staffmembe2 2 .house name as house5 13 1 ,
staffmembe2 2 .house number as house6 13 1 , staffmembe2 2 .locality as
localityl3 1 , staffmembe2 2 .post code as post8 13 1 ,
staffmembe2 2 .town as townl3 1 , employment3 .id as id9 2 ,
employment3 .dateJoined as dateJoinedS9 2 , employment3 .dateLeft as
dateLeft9 2 , employment3 .employmentType as employme4 9 2 ,

employment3 .grade id as grade7 9 2 , employment3 .holidayEntitlement as

247

holidayE5 9 2 , employment3 .lineManager staff id as lineMana8 9 2 ,
employment3 .salary as salary9 2 , workstream4 .employment details id as
employmentl 14 , workstream5 .id as workStre2 14 , workstream5 .id as
idl 3 , workstream5 .description as descript2 1 3 , workstream5 .name as
namel 3 , projects6 .workstream id as workstream5 15 , projects6 .id as
idl5 , projects6_.id as i1d0_4 , projects6 .code as codeO 4 ,

projects6 .description as descript3 0 4 , projects6 .name as nameO 4 ,
user/ .username as usernamel5 5 , user’/ .canApproveExpenses as
canAppro2 15 5 , user’/ .canApproveHolidays as canAppro3 15 5 ,

user’7 .expensesApprover staff id as expenselO 15 5 ,

user/ .holidayApprover staff id as holidayA8 15 5 , user’7 .locked as
lockedl5 5 , user7 .password as passwordl5 5 , user’7 .personalPhoto as
personal6 15 5 , user7 .role id as role9 15 5 ,

user’7 .unSuccessfulloginAttempts as unSucces7 15 5 ,

staffmembe8 .staff id as staffl 12 6 , staffmembe8 .dob as dobl2 6 ,
staffmembe8 .emailAddress as emailAdd3 12 6 ,

staffmembe8 .employmentDetails id as employml3 12 6 ,

staffmembe8 .first name as firstd4 12 6 , staffmembe8 .gender as
genderl2 6 , staffmembe8 .homeTelNo as homeTelNol2 6 ,
staffmembe8 .last name as last7 12 6 , staffmembe8 .ni number as
ni8 12 6 , staffmembe8 .tax code as tax9 12 6 , staffmembe8 .title as
titlel2 6 , staffmembe8 .username as usernamel2 6 ,

staffmembe8 .workTelNo as workTelNol2 6 , staffmembe8 1 .account number
as accountl 14 6 , staffmembe8 1 .bank name as bank2 14 6 ,
staffmembe8 1 .sort code as sort3 14 6 , staffmembe8 2 .address linel as
addressl 13 6 , staffmembe8 2 .address line2 as address2 13 6 ,
staffmembe8 2 .country as countryl3 6 , staffmembe8 2 .county as
countyl3 6 , staffmembe8 2 .house name as house5 13 6 ,
staffmembe8 2 .house number as house6 13 6 , staffmembe8 2 .locality as
localityl3 6 , staffmembe8 2 .post code as post8 13 6 ,
staffmembe8 2 .town as townl3 6 , expensesmn9 .username as usernamel6t ,
expensesmn9 .name as namel6 , expensesmn9 .name as nameb 7 ,
expensesmn9 .amount as amount5 7 , expensesmn9 .expeneses category id as
expeneses4 5 7 , expensesmn9 .mileage as mileage5 7 , expensescal(l_ .id
as 1d3 8 , expensescalO .category as category3 8 ,

expensescall .hasMileage as hasMileage3 8 ,

mileagecosll .expenses category id as expenses5 17 , mileagecosll .id as
idl7 , mileagecosll .id as id6_9 , mileagecosll .cost as cost6 9 ,
mileagecosll .lower limit as lower3 6 9 , mileagecosll .upper limit as
upperd 6 9 , staffmembel2 .staff id as staffl 12 10 , staffmembelZ .dob
as dobl2 10 , staffmembel? .emailAddress as emailAdd3 12 10 ,
staffmembel? .employmentDetails id as employml3 12 10 ,

staffmembel2 .first name as first4 12 10 , staffmembel2 .gender as
genderl2 10 , staffmembel2 .homeTelNo as homeTelNol2 10 ,
staffmembel2 .last name as last7 12 10 , staffmembel2 .ni number as
ni8 12 10 , staffmembel? .tax code as tax9 12 10 , staffmembel2 .title
as titlel2 10 , staffmembel2 .username as usernamel2 10 ,

staffmembel2 .workTelNo as workTelNol2 10 ,
staffmembel2 1 .account number as accountl 14 10 ,
staffmembel2 1 .bank name as bank2 14 10 , staffmembel2 1 .sort code as
sort3 14 10 , staffmembel2 2 .address linel as addressl 13 10 ,
staffmembel2 2 .address line2 as address2 13 10 ,
staffmembel2 2 .country as countryl3 10 , staffmembel2 2 .county as
countyl3 10 , staffmembel2 2 .house name as house5 13 10 ,
staffmembel2 2 .house number as house6 13 10 , staffmembel2 2 .locality
as localityl3 10 , staffmembel2 2 .post code as post8 13 10 ,
staffmembel2 2 .town as townl3 10 , genericroll3 .role id as

248

role2 11 11 , genericroll3 .role type as rolel 11 11 ,
expensesstl4 .role id as rolel 18 , expensesstl4 .status name as
status2 18 , updateablel5 .role id as rolel 19 ,
updateablel5 .field name as field2 19 , viewablestl6 .role id as
rolel 20 , viewablestl6 .field name as field2 20

from employment details employmentO

inner join Grade gradel on employment(O .grade id=gradel .id

left outer join staff member staffmembe2 on
employmentO .lineManager staff id=staffmembe2 .staff id

left outer join bank account staffmembe2 1 on
staffmembe?2 .staff id=staffmembe2 1 .staff id

left outer Jjoin home address staffmembe2 2 on
staffmembe? .staff id=staffmembe2 2 .staff id

left outer join employment details employment3 on
staffmembe? .employmentDetails id=employment3 .id

left outer join employment details WorkStream workstream4 on
employment3 .id=workstream4 .employment details id

left outer join WorkStream workstream5 on
workstream4 .workStreams id=workstreamb5 .id

left outer join Project projects6_ on
workstream5 .id=projects6 .workstream id

left outer join users user’7_ on
staffmembe? .username=user’ .username

left outer join staff member staffmembe8 on
user’/ .expensesApprover staff id=staffmembe8 .staff id

left outer Jjoin bank account staffmembe8 1 on
staffmembe8 .staff id=staffmembe8 1 .staff id

left outer join home address staffmembe8 2 on
staffmembe8 .staff id=staffmembe8 2 .staff id

left outer join expenses mnemonic expensesmn9 on
user’7 .username=expensesmn9 .username

left outer join expenses category expensescal0O_ on
expensesmnd .expeneses category id=expensescall .id

left outer join mileage cost mileagecosll on
expensescall .id=mileagecosll .expenses category id

left outer join staff member staffmembel2 on
user’7 .holidayApprover staff id=staffmembel2 .staff id

left outer join bank account staffmembel2 1 on
staffmembel2 .staff id=staffmembel2 1 .staff id

left outer join home address staffmembel2 2 on
staffmembel2 .staff id=staffmembel2 2 .staff id

left outer join Roles genericroll3 on
user’7 .role id=genericroll3 .role id

left outer join Role Allowed expenses_ statuses expensesstl4 on
genericroll3 .role id=expensesstl4 .role id

left outer join Role Update Staff Details updateablel5 on
genericroll3 .role id=updateablel5 .role id

left outer join Role View Staff Details viewablestl6_ on
genericroll3 .role id=viewablestl6 .role id

where employmentO .id=?

select user(0 .username as usernamel5 12 , user(O_ .canApproveExpenses as
canAppro2 15 12 , user(O_ .canApproveHolidays as canAppro3 15 12 ,
user(0_.expensesApprover staff id as expenselO 15 12 ,

user0 .holidayApprover staff id as holidayA8 15 12 , user(O .locked as
lockedl5 12 , user(O .password as passwordl5 12 , user(O .personalPhoto as
personal6 15 12 , user(O .role id as role9 15 12 ,

249

user0_ .unSuccessfullLoginAttempts as unSucces7 15 12 ,

staffmembel .staff id as staffl 12 0 , staffmembel .dob as dobl2 0 ,
staffmembel .emailAddress as emailAdd3 12 0 ,

staffmembel .employmentDetails id as employml3 12 0 ,

staffmembel .first name as firstd4 12 0 , staffmembel .gender as
genderl2 0 , staffmembel .homeTelNo as homeTelNol2 0 ,
staffmembel .last name as last7 12 0 , staffmembel .ni number as
ni8 12 0 , staffmembel .tax code as tax9 12 0 , staffmembel .title as
titlel2 0 , staffmembel .username as usernamel2 0 ,

staffmembel .workTelNo as workTelNol2 0 , staffmembel 1 .account number
as accountl 14 0 , staffmembel 1 .bank name as bank2 14 0 ,
staffmembel 1 .sort code as sort3 14 0 , staffmembel 2 .address linel as
addressl 13 0 , staffmembel 2 .address line2 as address2 13 0 ,
staffmembel 2 .country as countryl3 0 , staffmembel 2 .county as
countyl3 0 , staffmembel 2 .house name as house5 13 0 ,
staffmembel 2 .house number as house6 13 0 , staffmembel 2 .locality as
localityl3 0 , staffmembel 2 .post code as post8 13 0 ,
staffmembel 2 .town as townl3 O , employment2 .id as id9 1 ,
employment2 .dateJoined as dateJoinedS9 1 , employment2 .dateLeft as
dateLeft9 1 , employment2 .employmentType as employme4 9 1 ,
employment2 .grade id as grade7 9 1 , employment2 .holidayEntitlement as
holidayE5 9 1 , employment2 .lineManager staff id as lineMana8 9 1 ,
employment2 .salary as salary9 1 , grade3 .id as idl0_2 , grade3 .code
as codel0 2 , grade3 .maximumSalary as maximumS3 10 2 ,

grade3 .minimumSalary as minimumS4 10 2 , grade3 .name as namelO 2 ,
staffmembed4 .staff id as staffl 12 3 , staffmembed4 .dob as dobl2 3 ,
staffmembe4 .emailAddress as emailAdd3 12 3 ,

staffmembe4 .employmentDetails id as employml3 12 3 ,

staffmembed4 .first name as firstd4d 12 3 , staffmembed .gender as
genderl2 3 , staffmembed4 .homeTelNo as homeTelNol2 3 ,
staffmembed4 .last name as last7 12 3 , staffmembed4 .ni number as
ni8 12 3 , staffmembe4 .tax code as tax9 12 3 , staffmembed .title as
titlel2 3 , staffmembed4 .username as usernamel2 3 ,

staffmembed4 .workTelNo as workTelNol2 3 , staffmembe4 1 .account number
as accountl 14 3 , staffmembe4 1 .bank name as bank2 14 3 ,
staffmembed4 1 .sort code as sort3 14 3 , staffmembed4 2 .address linel as
addressl 13 3 , staffmembed4 2 .address line2 as address2 13 3 ,
staffmembed4 2 .country as countryl3 3 , staffmembed4 2 .county as
countyl3 3 , staffmembe4 2 .house name as house5 13 3 ,
staffmembed4 2 .house number as house6 13 3 , staffmembed 2 .locality as
localityl3 3 , staffmembed4 2 .post code as post8 13 3 ,
staffmembed 2 .town as townl3 3 , user5 .username as usernamel5 4 ,
user5 .canApproveExpenses as canApproz 15 4 , user5 .canApproveHolidays
as canAppro3 15 4 , user5 .expensesApprover staff id as expenselO 15 4 ,
user5 .holidayApprover staff id as holidayA8 15 4 , user5 .locked as
lockedl5 4 , user5 .password as passwordl5 4 , user5 .personalPhoto as
personal6 15 4 , user5 .role id as role9 15 4 ,

user5 .unSuccessfulloginAttempts as unSucces7 15 4 ,

expensesmné6t .username as usernamel4d , expensesmnt .name as nameld ,
expensesmn6t .name as nameb5 5 , expensesmn6 .amount as amount5 5 ,
expensesmné .expeneses category id as expeneses4 5 5 ,

expensesmné .mileage as mileage5 5 , expensesca’ .id as id3 6 _,
expensesca’ .category as category3 6 , expensesca’ .hasMileage as
hasMileage3 6 , mileagecos8 .expenses category id as expenses5 15 ,
mileagecos8 .id as idl5 , mileagecos8 .id as id6 7 , mileagecos8 .cost
as cost6 7 , mileagecos8 .lower limit as lower3 6 7 ,

mileagecos8 .upper limit as upperd4d 6 7 , staffmembe9 .staff id as

250

staffl 12 8 , staffmembeS .dob as dobl2 8 , staffmembe9 .emailAddress as
emailAdd3 12 8 , staffmembe9 .employmentDetails id as employml3 12 8 ,
staffmembed .first name as firstd4 12 8 , staffmembeS .gender as
genderl2 8 , staffmembe9 .homeTelNo as homeTelNolZ 8 ,
staffmembed .last name as last7 12 8 , staffmembe9 .ni number as
nig8 12 8 , staffmembed .tax code as tax9 12 8 , staffmembe9 .title as
titlel2 8 , staffmembe9 .username as usernamel2 8 ,
staffmembed .workTelNo as workTelNol2 8 , staffmembe9 1 .account number
as accountl 14 8 , staffmembe9 1 .bank name as bank2 14 8 ,
staffmembed 1 .sort code as sort3 14 8 , staffmembeS 2 .address linel as
addressl 13 8 , staffmembe9 2 .address line2 as address2 13 8 ,
staffmembed 2 .country as countryl3 8 , staffmembed 2 .county as
countyl3 8 , staffmembe9 2 .house name as house5 13 8 ,
staffmembed 2 .house number as house6 13 8 , staffmembe9 2 .locality as
localityl3 8 , staffmembe9 2 .post code as post8 13 8 ,
staffmembed 2 .town as townl3 8 , genericrollO .role id as role2 11 9 ,
genericroll0 .role type as rolel 11 9 , expensesstll .role id as
rolel 16 , expensesstll .status name as status2 16 ,
updateablel2 .role id as rolel 17 , updateablel2 .field name as
field2 17 , viewablestl3 .role_id as rolel 18 , viewablestl3 .field name
as field2 18 , workstreaml4 .employment details id as employmentl 19 ,
workstreaml5 .id as workStre2 19 , workstreaml5 .id as idl 10 ,
workstreaml5 .description as descript2 1 10 , workstreaml5 .name as
namel 10 , projectsl6 .workstream id as workstreamb5 20 , projectsl6 .id
as 1d20 , projectsl6 .id as id0 11 , projectsl6 .code as codeO 11 ,
projectsl6 .description as descript3 0 11 , projectsl6 .name as
nameO 11

from users user0O_

left outer join staff member staffmembel on
user(0_ .expensesApprover staff id=staffmembel .staff id

left outer join bank account staffmembel 1 on
staffmembel .staff id=staffmembel 1 .staff id

left outer join home address staffmembel 2 on
staffmembel .staff id=staffmembel 2 .staff id

left outer join employment details employment2 on
staffmembel .employmentDetails id=employment2 .id

left outer join Grade grade3 on employment2 .grade id=grade3 .id

left outer join staff member staffmembed4 on
employment2 .lineManager staff id=staffmembed .staff id

left outer join bank account staffmembed4 1 on
staffmembed4 .staff id=staffmembed 1 .staff id

left outer join home address staffmembed4 2 on
staffmembed .staff id=staffmembed 2 .staff id

left outer join users user5 on
staffmembed .username=user5 .username

left outer join expenses mnemonic expensesmn6 on
user5 .username=expensesmnét .username

left outer join expenses category expensesca’_ on
expensesmné6t .expeneses category id=expensesca’ .id

left outer join mileage cost mileagecos8 on
expensesca’_.id=mileagecos8 .expenses_ category id

left outer join staff member staffmembe9 on
user5 .holidayApprover staff id=staffmembeS .staff id

left outer Jjoin bank account staffmembed9 1 on
staffmembed .staff id=staffmembed 1 .staff id

left outer join home address staffmembe9 2 on
staffmembed .staff id=staffmembed 2 .staff id

251

left outer join Roles genericrollO_ on
user5 .role id=genericroll0 .role id

left outer join Role Allowed expenses_ statuses expensesstll on
genericroll0 .role id=expensesstll .role id

left outer join Role Update Staff Details updateablel2 on
genericroll0 .role id=updateablel2 .role id

left outer Jjoin Role View Staff Details viewablestl3 on
genericrollO .role id=viewablestl3 .role id

left outer join employment details WorkStream workstreaml4 on
employment2 .id=workstreaml4 .employment details id

left outer join WorkStream workstreaml5 on
workstreamld4 .workStreams id=workstreaml5 .id

left outer join Project projectsl6_ on
workstreaml5 .id=projectsl6 .workstream id

where user(O .username=?

select expensesmn0_ .username as username?2 , expensesmn0O .name as name2 ,
expensesmn(0_.name as name5 1 , expensesmn(0 .amount as amount5 1 ,
expensesmn0_.expeneses category id as expeneses4 5 1 ,
expensesmnO_.mileage as mileage5 1 , expensescal .id as id3 0 ,
expensescal .category as category3 0 , expensescal .hasMileage as
hasMileage3 0

from expenses mnemonic expensesmn0

inner join expenses category expensescal on
expensesmnO_.expeneses category id=expensescal .id

where expensesmn(0_.username=?

select workstream0 .employment details id as employmentl 1 ,
workstream0 .workStreams id as workStre2 1 , workstreaml .id as idl O ,
workstreaml .description as descript2 1 0 , workstreaml .name as
namel 0

from employment details WorkStream workstreamO

left outer Jjoin WorkStream workstreaml on
workstream0 .workStreams id=workstreaml .id

where workstream(0 .employment details id=?

252

11.8 Appendix H — Software CD-ROM Contents

The deliverables of this project are included in the CD-ROM attached to this
dissertation due to the large size of the source code and supporting
documentations such installation and user guides and the Javadoc for the Java
source code. Below is a listing of what is included in the CD:

lﬁi" Office Management Application
| User Guide, pdf

,J OfficeMA Source Code

‘ET]'- Office Management Application

/N_ Installation Guide.pdf issues_files
& s Adobe Acrobat 7.0 Document
£ izzLes, hitm OfficeMA, war
HTML Document AR. File
=7 officema.sql
==| SOLFile Javadoc
= 1 21K¥B

+ OfficeMA Source Code — Contains the source code for the OfficeMA
developed by this project

» Office Management Application User Guide.pdf — The user guide for
the application.

+ Office Management Application Installation Guide.pdf — The
installation guide for the application.

» issues.html — Contains a list of issues currently open in this version of the
application.

» officema.sql — The PostgreSQL database SQL scripts required to create
the OfficeMA database and the default administrator user.

» OfficeMA.war — Is the Java Web Archive for the OfficeMA Web
application. This will need to be deployed to a Web container such as
Tomcat

 Javadoc — The Javadoc documentations for the Java source code
developed for the OfficeMA.

253

11.9 Appendix | - Software used for the project

» Eclipse IDE version 3.3 (http://www.eclipse.org) — An open source

enhanced integrated development environment with Java support.

e Jude Community version 5.0.2 (https://jude.change-vision.com/) — Free
community UML Case tool.

» PostgreSQL 8.2. DBMS server (http://www.postgresgl.org) — An open
source RDBMS that fully ACID compliant and includes most of SQL92 and
SQL99 data types

* Apache Tomcat 6.0.13 (http://tomcat.apache.org/) — An open source
Servlet and JSP container.

» Dojo Toolkit 0.43 (http://dojotoolkit.org/) — Dojo is an Open Source DHTML
toolkit written in JavaScript.

* OpenLaszlo (http://www.openlaszlo.org/) — OpenlLaszlo is an open source
platform for creating zero-install web applications with the user interface
capabilities of desktop client software.

» Hibernate ORM framework 3.2 (http://www.hibernate.org/) — Hibernate is a
popular open source ORM framework. Version 3.2 implements the Java
Persistence API (JPA)

» Spring 2.0 framework (http://www.springframework.org/) — Spring is an
open source framework and container that can be used in a domain model
to add transactional and security support. Can also supply object
dependencies at runtime using dependency injection.

» Struts 2.0.11 framework (http://struts.apache.org/2.x/index.html)

o JUnit (http://www.junit.org/)

254

http://www.junit.org/
http://struts.apache.org/2.x/index.html
http://www.springframework.org/
http://www.hibernate.org/
http://www.openlaszlo.org/
http://dojotoolkit.org/
http://tomcat.apache.org/
http://www.postgresql.org/
https://jude.change-vision.com/
http://www.eclipse.org/

11.10Appendix J — PostgreSQL database utilities

The PostgreSQL distribution used in this project was version 8.2, included with
this download is the pgAdmin Il tool shown below. The tool can be used to
execute SQL statements and scripts against the database.

= pgAdmin Il Query - officema on fighter.homelan:5437*

File Edit Wiew Query Favourites Help

: O E‘? H g% e BE W p B [% ?g || 'é: EDfﬁcemannﬁghter.hnmelan:ﬁﬂM

gelect * from users; Scratch pad »
£] 11T}] [l]
QOutput pane x
Data Cutput |Exp|air1 | Messages | Histary |
username canapprovee| canapproveh| locked password personalphot| unsucces
character vai boolean boolean boolean character vai character vai| integer
1 mona 3 t f laila123]
2 thomas f f t Am 3x]
3 edward f f f hello]
4 omerio t t f hello]
5 mark f f f what]
[il 1l] [l]
K. Ln 1 Col 20 Ch 20 5 rows. 407 ms

255

11.11Appendix K — Jude UML CASE tool

Jude Community is a free community tool available from (https://jude.change-
vision.com/). The version used in the project was version 5.02 which supports
UML 1.2. All of the UML models in this project were developed using Jude. The
tool also supports exporting UML class diagrams to Java classes skeleton and
importing Java code into class diagrams.

Documents and

Fle Edt Diagram Algnmenk View Tool Window Help

D3-S BE BE "N QRAQAQ Crov {E |

B/ a6t

Structure | Inheritance | Map | Diagram | Search : 2] Task Management Use Case |2] StafF Management Class Dwagram|
-7 Staff Management [=]
[Class Diagrams
R enag —[<]z]e -] ells]=]L] =] T O] & ¥ = [=
L) Address = Bark Detsils B
& addseafiac - addressLine’ : String | [
frAction - addressLine2 : Sting - sortCade : int
KD Addstaffut - toun : String eqighcmm - account Humber © int
O BarkDetais 3 - county : String - bankName : String
E - postCode : String
& Edtstaffaction courtry - String + oreateBank Detaliz() : veid ity >
KO Editstaffur + createrddress() ; void 1 Task
O EmploymentDetails deseription © Sting
&) Findstaffaction parid uith completed : boolean
KO Findstafrur < type : Suring
Q Grade e 1 #cremteTask() : void
O Project 1 <Centity>> 0.2 B
O staffMember Staff Member :
Task - it .
~title : String A B
&) viewstaffDetaisaction firstitame - Sting :
FO ViewstaffDetailsUl - Iasthame : String B
QW kst [V] - dateOf Birth : Date -
arkstraam - natienallnsuraneeMumber ; Sting 1 P
- gender - char _ R E
Base | Initial visibility - emailAddress : $tring /_,’/ 3
pr—y - workTelMo : String [63% online as 4
Mamespace Analysis ClassDiagram Modzl aC.| [ty " home Telio - Suing ™ s 4
Name Staff Management Class Diagram - taxCods : Sting " N
it 1| +setUser() : User 1
Definition e Vo e R [
[s +addTask() : void =
+ get Al Staffhiembers) : List
oid + setBankDetails() © void
+ zetAddres=0) : void hags ol
tep + eneate StaffMEmber) : void 1
+ sawe Staffhiembert - void . L
year : int) : Holiday Entitlement + findStafhismbarAaFId :int) : Staffhismber pr——
FupdateDetals() : void Ralz
f + get StaffhernberDetails For Reler) ; woid details restrieted byl
+ sreate Details ForAccess Roles() : void - roleld it
+getBepensas() : Expense - wiew Aooess Rules | Map
worksfor + et EmploymentDatais) | Employment Details 1 - updatesccess Rules : bap
v +getUser() - User - holiday Approver : boolsan
L - expenses Apprower - boolean
- - BCCOUNIENT : bodlean
ccentity: 3
kastr\:zzm +getRoleffoleld : String) : Role
- + geten Assess RulesC) : bap.
1| - description : String + getlUpdatefocess Rules() : hiap
| +isFeeountart() ; boolsan
- name : String +is Holiday fpprovert) : boolean
+ get Al orktreams() - Workctream +isExpensesfgprower() : boolean
A Frotestsr - hor + getExpanzesStafiling : List [
Close] £ [[m | >

256

https://jude.change-vision.com/
https://jude.change-vision.com/

11.12Appendix L — Google code project

A'officema - G licrosoft Internet Exploi

Fle Edit YVew Favortes Tools Help

Qe - O B @ (h pSEard’\ 2 Favorites 8 Bv ; LB @

Address @ hitp://code.google. com/pfofficemal [v] B s

omer.d: Ibei il.com | Settings | What's new? | Help | My Account | Sign out |

GO Og le officema |[Search Projects | [Search the Web__|

Code Office - A development for Rich Intemet Applications
Project Home Downloads Wiki Issues Source Administer
Office Management Application (OfficeMA) is a Rich Internet Application (RIA) that hamesses the power of Web 2.0 to deliver flexibility, interactivity and License: Apachs License 2.0

enhanced user interface. The work on this project has started as part of my MSc Dissertation with Reading University. Labels: Ajax Java, Model. Web2, Hibernate.

Spring, Struts2, JSON, JavaScript. Dojo.
The application is build using Java and the following components: Dojo Toolkit, Hibernate 3.2, Struts 2, Spring 2.0, JSON tags, PostgreSQL database Domain, JPA

and Tomcat 6 application server.

Project owners:

omer.dawelbeit

Business Logic
Layer

) ® mtermet 2

officema - Goog| rosoft Internet Exploi
Fle Edit Vew Favorites Tools Help L
Q- © MA@ P Formos @ (-2 B -LJE @
aderess 4] httpsfcode. google.comjp/officemajsource browse [v] B e
) omer.ds Ibei il.com | Settings | What's new? | Help | Iy Account | Sign out |
GOO [e officema |[Search Projects] [Search the Web]
Code A development methdology for Rich Infermet Applications
Project Home Downloads Wiki Issues Source Administer
Checkout | Browse | Changes | | |[_search Trunk_|
Source Path: sw/ crid r15
» WebContent |#] Filename Size Rev Date Author
’z"!lt;“"d Address java 38KB 15 Feb09(2daysago) omer dawelbeit
uil
dist BankAccount java 25KB r5 Feb 09 (2 days ago) omer dawelbeit
:E?Eneraled EmploymentDetails java 59KB 15 Feh 09 (2daysago) omer dawelbeit
META-INF Stafflember java 176KB 15 Feb09 (2 daysago) omer dawelbeit |
Teom User java 74KB 15 Feb09(2daysago) omer.dawelbeit 1
~officema
exceptions
~model
company
~staff
grades L
roles 1
types
» persistence
¥ presentation
» serices
resources
Hest
wiki vl
This project is currently using 56.1 KB (0.1%) of its 100 MB repository quota.
nnnnn e e (]
&] pone ® Internet &

257

Bugs raised in the project issues page

¥ officema - Google Code - Mozilla Firefox

File Edit Wew Higtory Bookmarks Tools Help
- - @ ﬁ_l‘ | http:/fcode.google. com/p/officema fissues list | '| [}] |'| Google |L_]
@ Disable = & Cookies » [€55+ -] Forms ~ |E Images @ Information + "‘:‘J Miscellaneous = / Qutline ~ 2 : Resize * ‘}5 Tools = Q View Source ~ -~ Options
[} Legin | TechRepublic | @ Top 10 2007 - OWASP e [|G| officema - Google Code (5 | -
omer.dawelbeit@gmail.com | Settings | What's new? | Help | My Account | Sign out
1 officema
Go O e Office Management Application - A | | [Search Projects | [Search the Web |
development methdology for Rich Internet
Code
Applications
Project Home Downloads Wiki Issues Source Administer
Mew Issue | Search | Open Issues M| for | |[Sea.rd1] | Advanced Search | Search Tips
1-40ofd List | Grid
ID v Type ~ Status ~ Priority ¥ Milestone ¥ Owner ~ Summary + Labels ~
e 1 Defect Accepted Medium -— omer.dawelbeit » Changing the password for locked account by Admin doesn't unlock the
account
w 2 Defect Accepted Medium -— omer.dawelbeit » DBCP is causing java.sql. SALException when the connection is already
been reset
w 3 Defect Accepted Medium -— omer.dawelbeit » Accountant sees update button and the address page is editable
e 4 Defect Accepted Medium -— omer.dawelbeit » Clicking the My Details task bar button results in an error dialogue
1-40ofd
©2008 Google - Code Home - Terms of Senvice - Privacy Policy - Site Directory
(= [Done @ & openNotebook @

258

11.13Appendix N — Debugging JavaScript and Browser tools

11.13.1Firefox Firebug

Firebug is a plugin for the Firefox browser and it offers a great number of features
such as DOM inspection, performance monitoring, JavaScript debugging, etc...
to mention only a few.

*"Firebug - Object Oriented concepts and inheritance | The Dojo Toolkit

File View Help
Inspect | window % |
Console HTML (S5 Script DOM Net Options =
J50NRequest Object [1
d_fullMenustate false
dijit Object _base=0bjsct
djConfig Object modulePaths=08j=ct isDebug=fzlss
dojo Object global=window isBrowser=trus isRhino=falzs
dojotoolkit Object
host "http://dojotocolkit.ozg”
org Object
onbeforeunload function() R
document Document cbjsct-orisnted-concepts-and-inheritance
frameElement
innerWidth 1280
innerHeight 298
outerWidth 1288
outerHeight 778
screenk -4
screeny -4
pageXOffset a
pagefOffset 171
scrollx i
scrolly 171
scrollMaxy a
L___ccrallid 470 M

11.13.2Firefox Web Developer Toolbar

Offers many essential features for web developers
(http://chrispederick.com/work/web-developer/)

_Jcss+ lForms~ Himages ™ Ii@'lr‘d‘t:nrmatic:nr'l"
Disable Styles >

Display C55 By Media Type P
View C55 #4C
View Style Information 3 {Y

Add User Style Sheet...
Edit C55 ¥ OE
Use Border Box Model

259

http://chrispederick.com/work/web-developer/

11.13.3Microsoft Script Debugger for IE

For debugging in Internet Explorer, Microsoft script debugger can be used.
Although it does not offer as many feature as Firebug, it can be used to find
JavaScript bugs

licrasoft Script Editor [run fewfi-iafr-
Fle Edit View Debug Table Took Window Hep -
@ & B - BEREE-.
. L e - A TiET
Running Documents # X || hetp:/fsearch.e..dl [Read only] | 4 b % |Project Explorer - Miscellaneou... % X
= Microsoft Internet Explorei | | ——
21 semrch.dl7saforasbeabr | client objects & Events | |moEvents) s .
anonymeus code <!DOCTYEE T IC "—//W3C//DTD XHIML 1.0 Transitional//EN" "Betp://waw.w3.0rg/TR/xhtmll/DID/xhTmll— @5‘: e |
anonymous code </script><scr "text/javascript"> (function () { PP e
eval code var _r = vjo.Registry:
eval code _r.put('playground’, new vjo.darwin.core.ebayheader.playground.Playground('playground®, 'getPlayground!
eval code “r.puc('bra', new vio.darwin.core.bta.BuyerTransactionAlert('bta', 60, 2, 2, ://bmsgs .ebay.co.uk/y
eval code _r.put{'gnh_2', new vjo.darwin.core.express.ExpressCrossLinking('divCrossLink', 'b_close', ' (<¥1#»)', 1
eval code nao:
eval code (function() {
eval code var _d = vjo.dsf.EventDispatcher;
eval code var _r vjo.Registry;
eval code _d.add('body', 'load', function(event) { return vjo.Registry.get('playground').show(): }):
eval code _d.add('body', 'load’, function(event) { return vjo.Registry.get('bta’).onRefresh(); 1);
eval code “d.add('body', 'load', function(event) { return vjo.Registry.get('gnh 2').init(}; }):
eval code
eval code "ebay">cdiv "gnheader” cla gbndri><table widch
eval code 1id #0098cf; ma botto: ®}
eval code
eval code
eval code
eval code
eval code ivCrossLink" st "display:none;"></divy<div 3 'visibility:hidden;position:absol
eval code configuration.
eval code war ¢ = ebay.oDocument.addConfig(new EbayConfig("RTMEngine")):
el code i R gy JJ
eval code i
[l B3 Design HTML I | (]
Watch & X
Name Value Type
Ready Ln1 Col 1 Ch1 INS

11.13.4Microsoft IE Developer Toolbar

[}
X
Fle Edt Vew Favorts Toos Help *
Q- Q HRAG O searn S Favertes €2 2 o 8-l @

Address |&] http:/j M &0
Web Imsges Maps News Shopping Mail moe¥ omer.dawelbeit@gmail.com | iGoogle | My Account | Sign out

Google

IRiCrosoft Internet Explors

sovances sesrcn
Frsterences
Google Search_|[_Im Feeling Lucky Lenguage Teol

Search: @ the web O pages from the UK

Advertising Programmes - Business Solutions - About Google - Ga to Google com

EhG|

X |[g] 44 B% & Fie Find Dissble View Outine Images Cache Tools Validate

<HEAD> [a]) R
(- <BODY> Attribute: | | Node: |CENTER Currentstyle
<PREid=tric> Name Value Property Current Value
S depiay block
il font-family arial, sans-serif
ass=g
DIV g text-align center
5 <DIVid=guser>
) <NOBR>
g [Show Read-Orly Praperties [Jshow Default Style Values
& @ Internet =]

260

11.14Appendix O - Project Schedule

Table 22 — Project schedule and deadlines

ID Name Duration | Start Finish
1 | Requirement Gathering 01/10/2007 | 19/10/2007
2 | Preliminary Report 01/10/2007 | 01/10/2007
3 | Requirement Elicitation 01/10/2007 | 03/10/2007
4 | Use Case Modelling 04/10/2007 | 17/11/2007
5 | Prototype 11/10/2007 | 01/11/2007
6 | Initial system architecture 19/10/2007 | 19/10/2007
7 | Requirement document + prototype 17/11/2007 | 17/11/2007
8 | Requirement Analysis 17/11/2007 | 07/12/2007
9 | Use case realisation 17/11/2007 | 07/12/2007
10 | Domain Analysis 17/11/2007 | 07/12/2007
Analysis class diagrams and
11 | communication diagrams 10/12/2007 | 10/12/2007
12 | System Design 29/10/2007 | 02/11/2007
13 | Deployment modelling 29/10/2007 | 02/11/2007
14 | Component modelling 29/10/2007 | 02/11/2007
15 [Architectural modelling 29/10/2007 | 02/11/2007
Overview design and implementation
16 | architecture 02/11/2007 | 02/11/2007
17 | Detailed Design 10/12/2007 | 17/12/2007
18 [Detailed class diagram 10/12/2007 | 17/12/2007
19 [State and Interaction diagrams 10/12/2007 | 17/12/2007
20 | Design models 17/12/2007 | 17/12/2007
21 | User Interface design 17/12/2007 | 24/12/2007
22 | User interface modelling and design 17/12/2007 | 17/12/2007
Design models with interface
23 | specification 17/12/2007 | 17/12/2007
24 | Database Design 17/12/2007 | 24/12/2007
25 | Data requirements
26 | Conceptual data model
27 | Logical schema
28 | Conceptual data models and SQL 17/12/2007 | 24/12/2007
29 | Interim Report 03/12/2007 | 03/12/2007
30 | Construction, testing and implementation 24/12/2007 | 21/03/2008
31 | Write Java code
32 | Implement the user interface
33 | Database implementation
34 | System documentation
35 | Application source code 21/01/2008 | 21/03/2008

261

11.14.1Project Gantt Chart

tél" Microsoft Project - Disserta

@ File Edit Wiew Insert Format Tools Project Collaborate Window Help

€ |Task Name Duration | Start | Finizh |predeom. |24 Sep o7 08 Oct 07 |22 oct 07 05 Nov 07 | 19 Nov 07 03 Dec'07 [17 Dec'07 31 Dec 07 [12Jan" o
S[WIS[T|IMJF]T[s[wW]sS][T[M][F[T]sIW][sS[T[M[F]T]s[W[S[T[MJ[F]T]s[W]
[=] Requirement Gathering 15 days |Mon 041M0/07 Fri 1910407 y
E Preliminary Report 0 days| Mon 01410/07| Mon 01/10/07 o 01110
Requirement Elicitation 3 days| Mon 01MOVOT7| Wed 03110407 |2
Use Case Modelling Sdays| Thu 041007 | Wed 10/10/07 | 3
Prototype Sdays| Thu 1110/07 Wed 17/10/07 4
E Initial ystem architecture 1day| Fri18M0/07 Fri19M10/07|5
Requirement document + Odays| Fri18M0o7| Fri1910/07|6 19110
=l Requirement Analysis 5 days Mon 22M0/07 Fri 26/M10/07 7
Eq Use case realization Sdays| Mon 221007 Fri26M0/07
Domain Analysis Sdays| Mon 2210507 Fri 26/10/07
Analysiz class diagrams £ 0 days| Fri28M0/O7| Fri26M0/07105
= System Design 5 days Mon 2910007 Fri 02/11/07 11
Deployment modelling Sdays| Mon25M10/07 Fri 02/11/07
Component modeling 5days| Mon28M0VO7| Fri02M1/07
Architectural modeling 5days| Mon28M0VO7| Fri02M1/07
Ovwverview design and impl 0 days| Fri02M1/07 Fri 02/11/07 13,1415
[=] Detailed Design 5days Mon 05M1/07 Fri 09/11/07 16
Detailed class diagram 5days| Mon0SM1/07| Fri0%M11/07
State and Interaction diagr S days| Mon 051107 Fri 09/11/07
Design models 0 days| Fri09M11/07 Fri08M1/07 1819
= User Interface design 5 days Mon 12M1/07 Fri 16/M11/07 20
User interface modeling a Edays| Mon 121107 Fri 16/11/07
De=ign modelz with interfz Odays| Fri18M1/07| Fri16M11/07|22
= Database Design 15 days Mon 12M1/07 Fri 30M1/07 20
Data requirements Edays| Mon 121107 Fri 16/11/07
Conceptual data model Sdays| Mon18M1/07| Fri23M1/07|25
Logical schema 5days| Mon28M1/07| Fri30M1/07|28
Conceptual data models a 0days| Fri30M1/07 Fri 30411407 27 30M1
Interim Report 0days| Fri30/M11/07 Fri30M1/07 28 3011
= Construction, testing and i 30 days Mon 03M12/07 Fri 11/01/08 29
Write Java code 30 days| Mon 03M12/07 Fri11/01/08
Implement the user interfa 10 days| Mon 03M2/07| Fri 141207
Databaze implementation 5days| Mon03M2/07 Fri07M2/007
Syetem documentation 30 days| Mon 03M12/07 Fri 11/01/08
Application source code 0days| Fri11/01/08| Fri11/01/08|31,33,32 _I

262

263

	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	1Introduction
	1.1Motivations behind the project
	1.2Project Aim
	1.3Project Objectives
	1.4Organisation of this Dissertation

	2Technology Background
	2.1Why Web applications?
	2.2The Concepts of Web 2.0
	2.2.1Rich Internet Applications

	2.3The Web as an OO user interface
	2.4The use of a dynamic rich user interface
	2.4.1The use of rich visual widgets:
	2.4.2Breaking the page model using AJAX

	2.5The use of lightweight frameworks and established modelling techniques
	2.6Usability Requirements
	2.6.1User Interface (UI) Design Principles
	2.6.2Web pages design principles
	2.6.3Design rules for the OfficeMA

	2.7Accessibility
	2.8Summary

	3Project Requirements
	3.1HR Requirements of Small Businesses
	3.1.1Obstacles facing small businesses
	3.1.2What is needed and why?
	3.1.3Alternative applications

	3.2Software used for the Project
	3.2.1Java Web Components

	4Design Methodology
	4.1Project Lifecycle
	4.2The Software Development Process
	4.2.1Requirement Capture and Modelling
	Techniques
	Key Deliverables

	4.2.2Requirement Analysis
	Techniques
	Key Deliverables

	4.2.3Class design (Detailed design)
	Techniques
	Key Deliverables

	4.2.4User Interface Design
	Techniques
	Key Deliverables

	4.2.5Database Design
	Techniques
	Key Deliverables

	4.2.6Construction, testing and implementation
	Techniques
	Key Deliverables

	5Preliminary System Design
	5.1Requirements Gathering
	5.2Initial System Architecture
	5.3Requirement Capture and Modelling
	5.3.1Prototyping the User Interface
	5.3.2Staff Management Requirements
	Requirements Summary
	Requirements List
	Use Cases

	5.3.3Expenses Management Requirements
	Requirements List
	Use Cases

	5.3.4Authentication and Authorisation Requirements
	Requirements Summary
	Requirement List
	Use Cases

	5.3.5System Settings Management
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.6Time Booking Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.7Holiday Management Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.3.8Task Management Requirements
	Requirements Summary
	Requirement List
	Use Cases
	Use Cases Summary

	5.4Requirement Analysis

	6Implementation Strategy
	6.1System Architecture
	6.2Database layer
	6.2.1Choosing a DMBS
	6.2.2Database Implementation

	6.3Business Logic Layer
	6.3.1POJO Architectural Pattern
	6.3.2Spring Framework and Dependency Injection
	6.3.3Domain model classes
	6.3.4Object to relational mapping framework
	6.3.5Coding practices
	Code Repository

	6.3.6Unit testing the domain model classes

	6.4Presentation Layer
	6.4.1Presentation Layer logic and data formatters
	Struts 2 framework
	JavaScript Object Notation (JSON)

	6.4.2Graphical user interface
	A new approach to web user interface development
	The client side View
	The client side Model (Data)
	The client side Controller

	6.5Overall System

	7Detailed Software Design
	7.1Detailed Class Design and Implementation
	7.1.1Design and architectural patterns
	7.1.2Enumerated types
	7.1.3Dependency Injection using Spring
	7.1.4The use of Exceptions
	Implementation details

	7.1.5Generics and Parameterized Classes
	Implementation details

	7.2Application Packages
	7.2.1Company package:
	Implementation Details

	7.2.2Expenses package:
	Expenses management service
	Implementation Details

	7.2.3Holiday package:
	Holiday management service
	Implementation Details

	7.2.4Staff package:
	Staff members’ roles
	Staff management service
	Create staff sequence diagram
	Authenticate staff sequence diagram
	Implementation Details

	7.2.5Task package:
	Task management service
	Implementation Details

	7.2.6Testing the domain model

	7.3User Interface Design and Implementation
	7.3.1Application action classes
	Implementation Details

	7.3.2User Interface Design
	Simplicity and Structure
	Visibility, Affordance and Consistency
	Feedback
	Tolerance
	Closure
	Performance and Data Refresh

	7.3.3User interface controller
	7.3.4User interface modelling
	Staff management boundary classes
	Staff management UI interaction diagrams
	Expenses management boundary classes
	Expenses management UI interaction diagram
	Task management boundary classes
	Task management UI interaction diagrams

	7.4Database Design and Implementation
	7.4.1Establishing requirements
	7.4.2 Data Analysis
	Entity types and relationships
	Entity subtypes
	One to one and one to many relationships
	Many to many Relationships
	Constraints

	7.4.3Entity Relationship Model
	7.4.4Normalisation
	7.4.5Relational Database Model
	7.4.6Physical Database Model
	Design base relations
	Designing general constraints
	Analyse transactions
	Choosing indexes

	7.5Caching, Pooling and Transactions Support
	7.5.1Caching
	7.5.2Connection Pooling
	7.5.3Transactions

	7.6Security
	7.6.1Insecure Communications
	7.6.2Session Hijacking
	7.6.3JavaScript Hijacking
	7.6.4JavaScript Tampering
	7.6.5SQL Injection, Remote file inclusion and Cross-site scripting

	7.7Deployment
	7.8System Testing

	8Evaluation
	8.1Satisfaction of business requirements
	8.2Accessibility
	8.3Usability
	8.3.1Visibility, Affordance and Consistency
	8.3.2Closure, Tolerance and Feedback
	8.3.3Performance and Data Refresh

	8.4Evaluation Summary

	9Conclusions
	9.1Project Achievements
	9.2Project Issues
	9.3Contributions of this Dissertation
	9.3.1Problems with adapting functional-oriented UI as content-oriented Web UI
	9.3.2Utilising the Web as a functional user interface
	Advantages of this approach
	Disadvantages
	Summary

	9.4Suggestions for Future Work
	9.4.1Usability and Accessibility of RIA
	9.4.2Performance of RIA
	9.4.3Enhancements to the Office Management Application

	10References
	10.1Books and Articles
	10.2Web references

	11Appendices
	11.1Appendix A – Office Management Application’s Modules Survey
	11.2Appendix B – Documents Sampling
	11.2.1Sample holiday control spreadsheet

	11.3Appendix C – Use Case Models
	11.3.1Add Staff Use Case
	11.3.2Find Staff Use Case
	11.3.3View Personal Details / Edit Personal Details
	11.3.4View brief / complete staff details
	11.3.5Edit staff details
	11.3.6Find Expenses
	11.3.7View, approve, reject and pay Expenses
	11.3.8Edit Expenses Use Case
	11.3.9Add New Expenses Use Case
	11.3.10Login use case
	11.3.11View/Update system settings
	11.3.12Update my settings
	11.3.13View/Add Timesheet
	11.3.14View timesheet summary
	11.3.15View Holiday Details use case
	11.3.16View Holiday Calendar use case
	11.3.17View / Update Tasks use case

	11.4Appendix D – Requirement Analysis Models
	11.4.1Staff management communication diagrams
	11.4.2Staff management analysis class diagram
	11.4.3Authentication and Authorisation communication diagram
	11.4.4Authentication and Authorisation sequence diagram
	11.4.5Authentication and Authorisation analysis class diagram
	11.4.6Expenses management communication diagrams
	11.4.7Expenses management analysis class diagram
	11.4.8Expenses state diagram
	11.4.9Holiday management communication diagrams
	11.4.10Holiday management analysis class diagram

	11.5Appendix E – Relational Database Model
	11.6Appendix F – Physical database schema
	11.7Appendix G – Sample ORM SQL queries
	11.8Appendix H – Software CD-ROM Contents
	11.9Appendix I - Software used for the project
	11.10Appendix J – PostgreSQL database utilities
	11.11Appendix K – Jude UML CASE tool
	11.12Appendix L – Google code project
	11.13Appendix N – Debugging JavaScript and Browser tools
	11.13.1Firefox Firebug
	11.13.2Firefox Web Developer Toolbar
	11.13.3Microsoft Script Debugger for IE
	11.13.4Microsoft IE Developer Toolbar

	11.14Appendix O - Project Schedule
	11.14.1Project Gantt Chart

