
Prepared by: Omer Dawelbeit, T0986935

1

Prepared by: Omer Dawelbeit, T0986935

Abstract

2

Omer Dawelbeit, 20/12/-3741
 A one page summaryThis summary will:say something about the project objectivesbriefly describe any necessary background informationstate the main relational database design techniques usedcomment on any findings or resultsemphasis any major conclusions

Omer Dawelbeit, 20/12/-3741
 Use A4-size paper for your project report, and put your name, your personalidentifier, the course code and ‘Project report’ at the top of every sheet.The markers of your project report will assess it under five headings and willapportion the marks as follows:• item 1: what you set out to do and why (marks out of 10);• item 2: what you did, how you did it and why (marks out of 35);• item 3: what the outcomes were (marks out of 20);• item 4: reflection (marks out of 15);• the length, structure and clarity of your report, together with its correct use ofEnglish (marks out of 20).Some limited feedback on your performance in each of these areas will beprovided after results have been issued.LengthYour report should be 5000 to 7000 words in length, excluding diagrams, tables,references/bibliography and appendixes.NoteState the number of words at the end of your report. If you fail to do this you willbe penalized. You will also be penalized if your report does not fall within thestipulated word length.StructureYour report should have:• an appropriate title page;• a one-page summary;• an introduction, which may also cover some or all of item 1 (see above);• sections to cover items 1 to 4 in (see above);• a conclusion, which may also cover some or all of item 4 (see above);• a list of references (and possibly also a bibliography) along with anyacknowledgements;• possibly one or more appendixes (see below) and, if necessary, a glossary.Clarity, style, and use of EnglishYour report should be written in a clear style and be correct in its use of English.In thinking about the audience for your report, remember the reader will not onlybe your tutor, but also someone else who is unfamiliar with your work to date.You are advised to imagine you are writing for someone who has studied therelated level 3 course. Be aware it is inappropriate to write entirely in passivevoice; if you are unsure about this you should read Section 2.8 of Writing Reportson the Resources CD-ROM.NoteThere are 20 marks for the structure, clarity and style of your report, togetherwith its correct use of English. If you do not observe the length requirements, orstate the number of words you have used, marks will be deducted here.Use of appendixesYour appendixes should be used for those things that would distract the readerfrom the main narrative, so where necessary things such as the following shouldbe placed in appendixes.• Lengthy or detailed tables.• Program listings, test cases and results.• User and technical documentation.• Derivations of standard formulae.• Details of standard procedures.NoteYour tutor will award marks for the main text of your report and your use of theappendixes as supporting evidence. This means your tutor is not expected to readyour appendixes thoroughly, and so you should extract important results – orsummaries of important results – from them and include these in your main text.If you do not do this, you cannot assume your tutor will see them.

Prepared by: Omer Dawelbeit, T0986935

Table of Contents
...1
Abstract...2
Table of Contents..3
Chapter 1...5
Introduction...5

1.1 Project aims...6
1.2 Project description..7

1.2.1 Introduction..7
1.2.2 Procedure...8

1.3 Review of Database Development Techniques...9
Chapter 2...10
Literature Search...10

2.1 Introduction...11
2.2 Literature search relevant to the main part of the project..12
2.3 Literature search relevant to the two further topics:..13

Chapter 3...15
 Design Approach & Activities..15

3.1 Project Management Techniques...15
3.2Database Development Techniques...18

3.2.1 Establishing requirements..18
3.2.2 Data Analysis..19

Entity types and relationships...19
Entity subtypes..20
m:n Relationships..22
Constraints...22

3.2.3 Database Design..23
Developing a relational model:...23
Domains..23
Declaring relations..23
Representing relationships..24
Representing constraints...24

3.2.4 Database Implementation..25
Introduction:..25
SQL Data Definition Statements...26
Domains..26
Tables Definition...27
Defining columns..28
Declaring primary and alternate keys..29
Declaring foreign keys..31
Summary of database tables..32
Extra Tables...33
Defining constraints..33
Defining views..36
Defining functions & procedures..37
Table creation order..38
Populating Tables..39
Database files and indexes..39

Chapter 4...41
Results & Discussion..41

4.1 Client requirements...42
4.1.1 Data requirements ..42
4.1.2 Data processing requirements...45

Weekly operation for duty coverage...46
Daily operation for duty coverage...49

3

Prepared by: Omer Dawelbeit, T0986935

4.1.2 Summary...50
4.2 Review of the further topics..51

4.2.1 Overview of Query Processing...51
4.2.2 Implementation of Postal Addresses using SQL-99 User Defined Types..52

Chapter 5...54
 Overview of Query Processing ..54

5.1 Introduction to query processing:..54
5.2 The Query Processor..55
5.3 Architecture and operation of a Query Processor..56

5.3.1 The Parser..56
5.3.2 The catalog..57
5.3.3 Query Rewrite...57
5.3.4 The query optimiser..58
5.3.5 Search Space ..58
5.3.6 Search Strategy..58
5.3.7 The Plan...59
5.3.8 Plan Refinement/Code Generation..59
5.3.9 Query Execution Engine...60

5.4 Summary..60
Chapter 7...61
Implementation of Postal Addresses using SQL-99 User Defined Types..61

7.2.1 Introduction...62
7.2.2 Introduction to postal addresses..63
7.2.3 SQL Standards and levels of conformance...64
7.2.4 SQL99 and the support for complex data..64
7.2.5 Implementation of postal addresses ...65
7.2.5 Summary...69

Chapter 8...71
 Conclusion..71

8.1 Review of the project activities...72
8.2 Suggestions for Further Work...74

8.2.1 Access control for the D.O database...74
8.2.2 An application process for the D.O database..75

References & Bibliography...77
References:..77

 ..78
Bibliography ...78

Appendices..80
Name: DeliveryOfficeNames..87
WalkNumber: WalkNumbers..88

Type: WalkType..88
Status : EmployeeStatus..88
DutyNo: DutyNumbers...88

WalkNo: WalkNumbers..88
DropPoint: DropPoints..88

RegNumber: VehicleRegNumbers..89
Model: VehicleModel...89

RegNumber: VehicleRegNumbers..89
Model: VehicleModel...89

Reference: ConductReferenceNumbers..89
WeekNo: WeekNumbers...89
WeekNo: WeekNumbers...90

DutyHolder: EmployeeNumbers...90
DutyHolder: EmployeeNumbers...90
DutyHolder: EmployeeNumbers...91

RegNumber: VehicleRegNumbers..92
{IsDrivenBy}..92

4

Prepared by: Omer Dawelbeit, T0986935

Chapter 1

Introduction

5

Omer Dawelbeit, 20/12/-3741
 An introduction, which may also cover some or all of item 1Item 1: What you set out to do and why (10 marks)You should include the following.A re-statement of your aims form TMA 02; these may have altered as your project evolved, and this is acceptable (but see also item 2 below).A description of the context of your project, including a brief background showing why there is a need for the work you have carried out in your particular project.

Prepared by: Omer Dawelbeit, T0986935

1.1 Project aims
The aims of this project can widely be divided into two main areas:

1- To develop a database for Coventry delivery office using the database development
techniques outlined in M358, and to ensure that the database satisfies its client's
requirements and maintains internal consistency.

2- To further explore and investigate how the new features in SQL99 can be used to
implement postal addresses.

The delivery office database should satisfy, but is not limited to the following:

• Assists D.O managers (DOMs) to keep and maintain personnel records.

• Replace the current system, which consists of Microsoft Excel spreadsheets. The
old system suffers from many problems such as inconsistencies and update anomalies
and lack of security.

• Record the delivery office (DO) staff details, which include, but not limited to:

Full names, addresses, contact numbers, pay numbers, dates of entry to the business,
training courses attended, grades, education, job details, …etc.

• Assist the DOM to plan the office annual leave (holidays) for the staff, taking into
consideration the maximum quota for the number of staff allowed to be off work for one
week.

• Assist the DOM in resources planning and duty coverage.

• Help to keep and maintain a sick record for the office.

• Record customer complaints list, which include complaint type, job number and
responsible postman pay number.

• Keep a list of the addresses covered by the delivery office, which assist the DOM
in address management, e.g. adding new addresses or deleting demolished addresses.

The project also aimed at exploring in depth some database issues, this exploration required
some literature search. The issues investigated in this project can be summarised as follows:

• The components of the query processor part of the DBMS and their operation. The
project also briefly discusses how the query can be mapped by these components into an
optimised sequence of lower level operations.

6

Prepared by: Omer Dawelbeit, T0986935

• The new features in SQL99, especially user defined types and how these can assist
in implementing complex data that has subcomponents such as postal addresses. The
project also looked at the importance and the structure of postal addresses.

1.2 Project description

1.2.1 Introduction

The database produced in this project is required by Royal Mail delivery office in Coventry.
Royal Mail deals with collection, processing, distribution and delivery of mail in the UK.
These stages collectively are called the pipeline, and the last stage in this pipeline is delivery.
Usually a delivery function is carried out in local offices all throughout the country and they
delivery to specific postcodes, e.g. CV6 area.

Currently the administration staff in the delivery office is using spreadsheets in the
management of the day to day activities. However, the data in these spreadsheets is just used
for storage and display purposes and can sometimes become invalid or inconsistent because
of the lack of the meaning of the data, constraints, referential integrity, security and access
control. The spreadsheet files are spread over a number of computers and usually contains
partial data about the resources of the four delivery offices. These files are being created by
the administration staff to help them carrying out their activities. When one of the
administration staff is off work, it proved to be very hard for the person covering his/her job
to locate or use these files.

For the above reasons the delivery office requires the development of a standard database
system that can be used by all administration staff. The database system must satisfy the
requirements outline in Appendix A, some of these requirements is to store and maintain lists
of data such as employees, vehicles, walks and duties. Other requirements are to satisfy the
daily and weekly operation of the delivery offices, which are mainly concerned with the duty
coverage. The database is required to represent and maintain the integrity and the meaning of
the data and also have the ability to be extended to support access controls and security.

The project also gave an overview of the structure and the operation of the query processor
module of the DBMS. This module is investigated because of its importance in ensuring that
the query language need only specify the result of a query not how it should processed.
Besides, this module relives the user from query optimisation, a time-consuming task that is
best handled by the query processor.

There was also a need to explore the current advances in SQL, and how these can be used to
implement postal addresses. The importance of postal addresses is that they exist almost in all
databases that hold personnel details. The way these addresses are implemented in a database
affects the way they can be manipulated and processed. This means if the DBMS doesn't
recognise the internal parts of the addresses, then extra processing is required on either the
DBMS side or the application process side. The project tries to give a solution to this by
implement postal addresses using SQL99 user defined types.

7

Prepared by: Omer Dawelbeit, T0986935

1.2.2 Procedure

The following list gives a brief outline of the techniques used for the development of the
project:

• Project management techniques were used to organise and schedule a plan for the
work on the project. TurboProject Express1 Software was used to construct a Gantt chart
for the project schedule.

• Literature search was carried out for the work on the main part of the project and
for the further topics. This involved the use of various resources such libraries,
databases, online resources, and so on.

• Relational database development steps outlined in M358 were used to develop the
D.O database. These steps can be summarised as establishing requirements, data
analysis, database design database implementation and finally database testing.

• Meetings were held with the client to establish a statement of data requirements
(Appendix A)

• The statement of data requirements was used to produce a conceptual data model
using entity relationships modelling (Appendix B)

• The conceptual data model was then transformed to a relation model, which is the
specification of the logical schema (Appendix C).

• SQL Anywhere 5.0 (Copyright © Sybase Inc.) was used for the implementation of
the relation model. This version of SQL is the one used by Sybase SQL Anywhere
DBMS.

• InfoMaker 5.0 (Copyright © Sybase Inc.) was used as a direct entry tool to enter
and execute the SQL statements used to create the D.O database.

1 TurboProject Express Ver 2.02 Copyright © IMSIsoft 2000 (http://www.imsisoft.com/).

8

http://www.imsisoft.com/

Prepared by: Omer Dawelbeit, T0986935

1.3 Review of Database Development Techniques
The activities carried out in this project for the database development are shown in Figure 1.1
below and can be summarised as follows (OU, M358, bk. 4, pp. 7):

• Establishing requirements involves consultation with, and agreement among,
users as to wheat persistent data they want, expressed as a statement of data
requirements.

• Data analysis starts with a statement of data requirements and produces [an E-R]
conceptual data model, which is a formal representation of what data a database should
contain, expressed in terms that are independent of how it may be realized.

• Database design starts with a conceptual data model and produces a specification
of a logical schema [(relational model)].

• Implementation involves the construction of a database according to a given
specification of a logical schema, which requires specification of an appropriate storage
schema [using SQL].

Figure 1.1 Model of database development (OU, M358, bk. 4, pp. 7)

9

Prepared by: Omer Dawelbeit, T0986935

Chapter 2

Literature Search

10

Omer Dawelbeit, 20/12/-3741
 Sections to cover items 1 to 4 (see above);Item 2: What you did, how you did it and why (35 marks)You should include the following.• Your literature search.• The particular approach you used for your work.• The activities you undertook as you worked through your project.Be careful not to write a mere narrative for this last point; your reasons are asimportant as your activities. It is important, for instance, that you indicate anychanges in direction you made during your work. These may have occurredbecause of things that came to light or problems that arose as you workedthrough your project; you should identify what these were and justify thedecisions you made as a consequence of them. If you changed your aims, youshould say so, and include your reasons, here.In this portion of your report you should take care to include sufficient detail foryour markers to be able to follow how and why you arrived at your outcomes. Forexample, in software development projects major design and implementationdecisions should be indicated and explained.For further information on this portion of your report you should read the materialrelating to your course in the section of this booklet entitled ‘Project-specificguidance’.NoteYou have already done much of the work for this portion of your report when youdid TMA 03. But you will now be able to complete it, and in doing so you shouldtake account of any comments your tutor made on your answer to TMA 03.

Prepared by: Omer Dawelbeit, T0986935

2.1 Introduction

A big part of this project required collecting information from external sources other than the
course materials; this is why the literature search was a major activity throughout the project
progress and the database development.

I’ve started the literature search while working on TMA01 to develop my project proposal,
and that was mainly to collect some initial ideas, at that stage my search was not structured
and I wasn’t aware of the different sources and tools available.

During that first stage of my project I’ve searched different sources randomly without any
search strategy, besides I did not know what exactly I was looking for. This was apparent
when reflecting on the literature search in TMA02, and from my tutor comments I realised
that I need a methodology for the literature search and also to develop more searching skills.
A starting point was SAFARI [1] (Skills in Accessing, Finding, and Reviewing Information).
The online course is organised into sections that cover the following areas:

• Understanding information

• Unpacking information

• Planning a search

• Searching for information

• Evaluating information

• Organising information

After finishing the online course, I had a very good idea about the basic principles and skills
required to carryout an effective literature search, not only that but also the different sources
of information such as library catalogues, bibliographic databases, and the World Wide Web.

I started by identifying the categories of the information I needed to collect. These categories
are information in the database field and general information. Information in the database
field was mainly required for the further topics. However, some of this information was also
required for the main part of the project.

The next step was to identify the sources of information such as library catalogues,
bibliographic databases and the World Wide Web. I've identified some of the digital
bibliographic databases which are specialized in the Information Technology field and in
particular databases. Some of these are maintained by:

• ACM: Association for Computing Machinery.
• IIEEE: Institute of Electrical and Electronics Engineers.
• VLDB: Proceedings of the International Conference on Very Large DataBases
• DBPD: Database Programming and Design

11

Prepared by: Omer Dawelbeit, T0986935

2.2 Literature search relevant to the main part of the
project

The client supplied most of the supplementary material required for me to gain domain
experience in the operation of the delivery office. This helped me to understand what needed
to be represented in the database. On the other hand most of the literature required for the
process of database development was from M358 course material. When searching for a
specific subject I used the course index as a faster way of locating the information.

During the data analysis I was not sure of how to model postal addresses. There were two
choices, either to model a whole address as an attribute or model an address at an entity. The
first option would require the use of SQL procedures to manipulate different parts of the
address when the database is implemented. However, in the second option the address sub-
component can be easily used in queries.

At this stage I needed some information about the actual modelling of postal addresses in the
Postcode Address File2 (PAF). I used the search facility on Royal Mail website3 and located
'PAF 5.0 Digest' (Royal Mail 2000). This is a comprehensive guide that explains the structure
of the PAF database and the format of the subcomponents of postal addresses. Based on the
modelling of the addresses in the PAF as tables, I have decided to follow the same approach
when modelling addresses in the D.O database.

The information provided in (Royal Mail 2000) about the length of each subcomponent also
proved useful when constructing the relational model, and it was used as a guide when
deciding the string length for the postcode, street and so on.

During the implementation activities I required some information about using some the SQL
Anywhere statements and data types, (Sybase, Inc. 1996) proved very useful. This user guide
was supplied in an electronic format and has a search facility. The guide offered
comprehensive cover for SQL Anywhere syntax and usage. I used the guide all throughout
the implementation activity to locate information such as SQL domains, triggers, user defined
functions and procedures.

During the project lifetime I needed some discrete information, for example the definition of
some database terms. I have used the World Wide Web for such information by trying to
locate online dictionaries for computer and Information Technology. Using Yahoo search
engine (www.yahoo.com) with keywords (such as 'IT dictionary') I came across Webopedia
(http://www.webopedia.com) a very useful online dictionary for IT terms.

2 PAF is a registered trademark of the Royal Mail (part of Consignia plc) and stands for Postcode Address File.
It is a database containing all known addresses and Postcodes in the United Kingdom, including England,
Scotland, Wales, Northern Ireland, Jersey, Guernsey, and the Isle Of Man (over 26 million addresses, 1.71
million Postcodes). It includes Small User Residential, Small User Organisation and Large User Organisation
details.

3 Royal Mail online: (http://www.consignia-online.com)

12

http://www.webopedia.com/
http://www.yahoo.com/
http://www.consignia-online.com/

Prepared by: Omer Dawelbeit, T0986935

2.3 Literature search relevant to the two further
topics:

I started the literature search for this part of the project by first deciding on the two further
topics to explore further. The next step was to identify the information I was going to need
before planning a search. Reading the relevant text from M358 and writing down a few points
that need exploration helped to have a general idea of the sort of information required. The
initial topics I decided to explore were:

• Distributed data, by further exploring and discussing the different techniques used such,
client multi-server, distributed databases and replication systems.

• Modelling and processing of postal addresses in relational databases.

Both subjects are large and open ended considering the time and the scope for this project.
According to this I decided to choose more specific topics. I have decided to investigate the
query optimisation part of the DBMS and briefly assess the different search strategies used by
the query optimiser. This choice is based on the importance of query processing in improving
the performance of query execution in both centralised and distributed DBMS. On the other
hand, I've decided to explore the new features in SQL99 that can be used to implement
complex data with subcomponents such as postal addresses.

After deciding on the two topics, I considered the following sources of information, and using
measures such as quality, relevance, objectivity and timelines to assess the information found:

• Databases (A way of storing, indexing, organising and retrieving information).
Specialised databases contain information in summary form about books and journal
articles.

• Library catalogues, are databases containing information, which relates to material
located in a particular library.

• The World Wide Web

First I considered locating some good reference books that I could use for background
reading. The first option was library catalogues, however some of these do no provide full
book information and review. I used some well know online booksellers take as an example
Barnes and Noble (www.bn.com) online bookstore offers not just search facilities to locate
book, but also provide reviews, prefaces and table of contents for most references. Using
keywords as distributed data, distributed databases, databases, client multi-server systems
located a few books one of which was (Valduriez and Ozsu, 1999).

The book does not just explain the Distribute DBMS architecture, but also reviews computer
networks, distributed database design, relational DBMS structure and summarises the query
processing and the different techniques of optimising distributed queries. The book was
relevant and useful for the query optimisation topic. The book explained how queries
expressed in relational calculus get rewritten into relational algebra and organised into an
operator tree (see Chapter 5).

13

http://www.bn.com/

Prepared by: Omer Dawelbeit, T0986935

(Gruber 2000) and (Elmasri and Navathe 2001) were valuable sources of information for the
second topic. (Gruber 2000) includes a chapter that summarises the new features in SQL99.
On the other hand, (Elmasri and Navathe 2001) gives chapters that discuss Object databases,
Enhanced entity relations modelling and SQL99 new object features in details.

Articles published in journals were located using databases such as ACM digital database.
Using search techniques, such as titles, subject area, and keywords usually produced some
good articles. For example, some articles that I came across are (Kossmann, 2000) and
(Eisenberg and Melton 1999).

(Kossmann 2000) discusses a recent research about the state of the art techniques used for
distributed query processing and it concentrates on structured data (such as that found in
relational or object-oriented databases) and on query languages for structured data (such as
SQL or OQL). The article also gave a general architecture for query processing, which I've
used as a starting point for the query processing topic. (Eisenberg and Melton 1999) included
some practical examples using the new user defined types in SQL99.

The literature search I have done was useful, however this came to reality after I learnt about
the information search by doing the SAFARI. I have learnt about the different types of
information (grey, primary, secondary literature), and where each. Most importantly how to
identify my needs and clarify my needs, and make a checklist for each source of information
(databases, web pages, library catalogues), and devise a search strategy for each source, and
after that assess the value and usefulness of the information found.

14

Prepared by: Omer Dawelbeit, T0986935

Chapter 3

 Design Approach &
Activities

3.1 Project Management Techniques
After developing the project proposal and setting out the project aims I went towards devising
a schedule for the project. This was done using project management techniques such as Gantt
charts. Project management can be thought of as the process that holds the project
development activities together, and ensures that the project meets its targets and objectives.

15

Prepared by: Omer Dawelbeit, T0986935

To devise a schedule for the project I divided the project into phases, tasks (activities), and
key events. I’ve used the database development model (Figure 1.1) as a guideline for the
different phases of the project. These phases can be summarised as:

• Read course literature

• Literature search

• Establishing requirements

• Data analysis

• Database design

• Database implementation

• Database testing

• Production of the Report

• Project review

Each one of those phases needed breaking down into tasks, so I realised in order to organise
the project schedule, I was going to need a project scheduling and planning tool. I used
TurboProject Express tool (Figure 3.1), this tool assisted me greatly in developing the project
schedule and in realising the critical path and the different tasks forming it.

Using the tool, I have defined tasks and key events for each phase. For example, the
development of a conceptual data model is a key event because it forms an interface between
data analysis and database design when one is finished the other one can start.

The project schedule played an important role in promoting a disciplined approached that I
have followed throughout my work on the project, besides it enabled me to adjust the
available time for each activity when others were delayed to stay within the deadline for the
project. Alongside the project schedule I have also maintained a project log by recording the
work I carried out on every work session. This helped me in writing the project report and
reflecting back what I have done.

16

Prepared by: Omer Dawelbeit, T0986935

Figure 3.1 Screenshot of Project Express showing a Gantt chart for the project

17

Prepared by: Omer Dawelbeit, T0986935

3.2 Database Development Techniques

The steps of database development outlined in subsection 1.3 were applied to develop the
database. These steps followed the general model shown in Figure 3.2 below. This implied
that any revision required for relations or tables to be applied to the conceptual data model.
This change should also be propagated to the relational model that can be used to implement
new tables. The same process is repeated until the database tables represent the data in an
acceptable way.

Figure 3.2 Summary of steps for database design

3.2.1 Establishing requirements

After a few meetings with the client to establish the data requirement I have compiled a
statement of data requirements (Appendix A). During the work on the statement many
problem and ambiguities arose, so I had to consult the client for further clarifications. Most of
the client requirements were in a form of tables, spreadsheet and forms that were used in the
old system, this material was of great use when writing the statement of data requirements.
The statement of data requirements was checked with the client to ensure it fully represented
the their requirements.

18

Prepared by: Omer Dawelbeit, T0986935

3.2.2 Data Analysis

The data analysis activities use the statement of data requirements to produce a conceptual
data model (Appendix B).

Entity types and relationships

From the initial statement of requirements, I’ve carried out different activities to analyse the
data and identify potential entity types and relationships taking these points as guidelines:

• An entity represents a subject that has meaning in a given context and about which there is
a need to record data, which can be identified as nouns or noun phrases.

• A relationship is about the existence of a connection between subjects, and in the context
of a statement of data requirement it is a verb or verbal phrase

Figure 3.3 Part of the Delivery Office data requirements statement

Consider Figure 3.3 as an example, the potential entity types can be identified as:

delivery office, administration staff, manager, postal address, walk, road, walk number, road,
van…

By looking at some of these nouns I’ve dropped manager, road, walk number and road as
entity types, because these are potential attributes for entity types. For example a manager is
an attribute of a delivery office, road is an attribute of an address and walk number is an
attribute of walk. On the other hand, the other nouns such as delivery office represent a
subject for which data needs to be recorded i.e. name, manager, telephone number and an
address. Administration staff are employees of the client, which is an entity type.

Although the statement mentioned that a delivery office has a number of walks, a walk is not
an attribute of a delivery office, because information needs to be recorded about each walk,
for example a walk number, and addresses covered by that walk. So this suggests a
relationship between an office and its walks such as consists of.
This starts another argument about addresses, if they are an attribute of a walk. But because
addresses are not atomic data structures I have decided to represent them as entity types. This

19

In the management of the day-to-day activities the delivery office administration staff require a
database to meet the following:

1- Coventry has four delivery offices each one of them is identified by its name and has a
telephone number, a manager and a postal address.

2- Each delivery office has a number of walks, a walk is a collection of addresses, which are
on the same road or are close to each other, each walk has a unique walk number, a type
(town, rural, or bulks), a delivery method (van or on foot), notes (dog warnings, etc…)
and a postal area that it covers.

3- The delivery office also has a number of vans each van is characterised by a unique
number beside the DVLA registration number, a make, a model and the size…

Prepared by: Omer Dawelbeit, T0986935

has many benefits, first because many entity types in my design would have an address
attribute, it was beneficial to model address as a separate entity type and link it with other
entity types using relationships to avoid duplication (other benefits were discussed in
subsection 2.2).

After finishing the data analysis I had some entity types and relationships between them. The
next step was to find identifiers for these entities. Luckily all the entity types have natural
identifiers used by the client, such as employee number, vehicle registration number or walk
number. Even addresses in my design have postcodes and building numbers, which are
enough to identify a unique address. To summarise I didn’t need to use any artificial
identifiers.

At this stage of modelling I followed a simple approach, to identify main entity types, their
attributes and the relationships between them, then decide if any of these entity types is an
attribute or visa versa.

Entity subtypes

Entity subtypes were introduced to assist in understanding some complex situations such the
Duty super type and its subtypes. I have also used entity subtypes in the case of Vehicle super
type. Not using entity subtypes at this stage would have resulted in more entities and
relationships and this will complicate the E-R model. For example, entity Employee would
have three relationships with entities FullTimeDuty, PartTimeDuty and NonWalkDuty instead
of just one

Figure 3.4 (a) The Delivery Office E-R diagram

20

Prepared by: Omer Dawelbeit, T0986935

Figure 3.4 (b) The Delivery Office entity types, constraints and assumptions.

21

Entity types

Employee (PayNo, Name, DateOfBirth, DateOfEntry, Grade, Phone, BadgeNo, Skills,
OvertimeAvailability, Status)

DeliveryOffice (Name, TelNo, ManagerName)
Vehicle (RegNumber, Model)

PrivateVehicle (Colour)
CompanyVehicle (VehicleNo, MotDueDate, Size)

Conduct (Reference, Type, Notes, Date)
Week (WeekNo, Quota)
SickAbsence (PayNo, DateCommenced, Reason)
Walk (WalkNumber,Office, Type, DelMethod, Remarks, Status)
MailDrop (WalkNo, Office, DropPoint, Details)
Duty (DutyNo)

WalkDuty()
FullTimeDuty ()
PartTimeDuty (Hours)

NonWalkDuty(DutyDetails)
DutySecondPart (DutyNo, WeekNo, DayOff, SecondPart)
DutyCover (DutyNo, PayNo, Cause)
Overtime (DutyNo, EmployeeNo, Duration)
Complaint (ReferenceNo, Details, Date)
LicensedEmployee (LicenceNo, VehicleSize)
Address (PostCode, BuildingNumber, StreetName, Town, PostalArea)

Constraints

The total annual leave for a certain week must not exceed the quota for that week.

Only employees with a driver grade or postal higher grade can participate in the PermanatlyCovers
relationship with NonWalkDuty.

Only full time employee can participate in PermanentlyCoveredBy with FullTimeDuty and only part
time employees can participate in PermanentlyCoveredBy with PartTimeDuty.

An Employee participating in CoversDayOff must not be participating in PermanentlyCoveredBy

A duty can be covered by overtime or duty cover only if it does not participate into PermanatlyCovers
and HasCover or the employee doing that duty is participating in the Has or MayBe relationships.

An employee can participate in PermanentlyCoveredBy with only FullTimeDuty or PartTimeDuty or
NonWalkDuty.

Employee and duties participating in PermanentlyCoveredBy should belong to the same delivery office

An employee participating in Performs or ScheduledFor should not be absent form work.

An employee can only participate in the Performs relationship if the attribute OvertimeAvailability is
‘Yes’.

 Assumptions

Only current sick absences are recorded, no history is kept.

A company vehicle might not be a spare vehicle and not used for a specific Delivery Office.

A duty might be vacant, i.e. with no employee covering it.

An employee can be a spare, i.e. not covering any duty.

The overtime is updated daily, i.e. no history is kept.

The duty cover are updated weekly, no history is kept.

All full time duties are 40 hours.

Prepared by: Omer Dawelbeit, T0986935

m:n Relationships

The E-R diagram in Figure 3.4 (a) has an entity type that resulted from resolving n:m
relationships this is Overtime. However, this was resolved in the E-R diagram because of the
extra attributes that needed to exist such Duration, an attribute of Overtime (The delivery
office conceptual data model is included in Appendix B). In the case of the Booked (Figure
3.5), it is not resolved at this stage because only the identifiers of Employee and Week need to
be recorded and used to form the new identifier for Booked (WeekNo, PayNo).

Figure 3.5 Booked relationship

Constraints

Constraints are represented in the E-R models in two ways (Figure 3.4):

• As a property of a modelling construct, such as participation conditions and unique
attributes.

• As a description in the Constraints part of a model as shown in Figure 3.4(b).

There are a few things in the conceptual data model which are chosen for the design purpose,
such as entity type LicencedEmployee because not every Employee can participate in Drives
and Owns relationships, only Employees with driving licences can. Looking ahead at an
Employee table, employees without driving licences will have Null entries in the column that
corresponds to foreign keys referencing PrivateVehicle and CompanyVehicle, so using this
new entity type eliminates this problem. The same approach was used with SickAbsence to
avoid Null entries in the Employee Table.

22

Prepared by: Omer Dawelbeit, T0986935

3.2.3 Database Design

Developing a relational model:

After constructing the conceptual data model, I started developing the relational model for the
delivery office (Appendix C). There following subsections discusses some issues about the
design decisions:

Domains

All notes attributes were defined on the GeneralNotes domain. Notes are only descriptive text
where no validation is possible and they are unlikely to be compared with each other.

Declaring relations

Entity subtypes concept is not supported by either relational models or SQL schemas.
However, there are alternative ways to transform entity subtypes to tables in a logical schema
(OU, M358, bk. 4 pp.96). One of these ways is to use relations that only represent the
subtypes, and not any super types. For example, the entity type Duty and its subtypes (Figure
3.6) would be represented in the relational model as relations FullTimeDuty, PartTimeDuty
and NonWalkDuty. These relations then give three tables, which I've named full_time_duty,
part_time_duty and non_walk_duty.

Figure 3.6 Part of the Delivery Office E-R diagram

23

Prepared by: Omer Dawelbeit, T0986935

Representing relationships

1:n relationships were represented using foreign keys, take for example the DeliveryOffice
relation:

relation DeliveryOffice
Name: DeliveryOfficeNames
TelNo: TelephoneNumbers
ManagerName: PersonNames
BuildingNumber: BuildingNumbers
PostCode: PostCodes
primary key Name
foreign key (BuildingNumber, PostCode) references Address not allowed null
{ represent mandatory participation with respect to HasAsset }
constraint (project DeliveryOffice over name) difference (project CompanyVehicle over
Office) is empty

The foreign key (BuildingNumber, PostCode) represents the relationship Houses, the
mandatory participation condition from the DeliveryOffice side is expressed by not allowing
the foreign key to be null. On the other hand, the mandatory participation condition on the
referenced relation side is expressed using a general constraint, for example the participation
condition on the DeliveryOffice side in regards to HasAsset.

With regards to 1:1 relationships, their representation has two steps. First, deciding which one
of the two relations will have the attribute declared as a foreign key, and then declare that
same attribute to be an alternate key. I’ve followed this technique to represent the following
relationships:

IsA, Drives, MayBe and CoveredBy.

During implementation I had to revise the side on which the alternate key for 1:1 relationship
representation resides. This was important because SQL Anywhere implies a not null for the
UNIQUE definition. This implies a mandatory participation condition from the side including
the foreign key. Take for example, the foreign key used in representing the Covers
relationship is better located on the Walk side because the participation condition is
mandatory, and this is expressed explicitly when declaring UNIQUE in SQL Anywhere. The
same was used with regards to MayBe by placing the foreign key on the SickAbsence side.

Representing constraints

Participation conditions constraints in the Delivery Office relational model are either
represented by the foreign key not allowed null on the referencing relation side, or by a
general constraint form the referenced relation side. When the foreign key is part of the
primary key for the referencing relation there is no need for the ‘not allowed null entry’
because this is already guaranteed using key constraints.

Other constraints located in the Constraints part of the conceptual data model were expressed
using the relational algebra constraint expression if this was possible. If this was not possible
the representation was left until the implementation stage to make use of triggers. For
example the constraint on the holiday quotas can be maintained by a trigger that makes use of
aggregate function count() in implementation stage.

24

Prepared by: Omer Dawelbeit, T0986935

3.2.4 Database Implementation

Introduction:

This section discusses how the specification of the delivery office logical schema (relational
model shown in Appendix C) is used to implement a schema and its associated database. This
implementation is done using SQL Data Definition Language (DDL) statements (Appendix
D). The output is a specification of all the tables and their constraints in a database.

The delivery office database is implemented using Sybase SQL Anywhere Database
Management system. This is a relational database system, and the database itself is stored on
one or more disk drives, and consists of the following objects [Sybase, Inc. 1995, ch.2, pp.2]:

Database objects Description
Tables Hold the information in the database
Keys Relate the information in one table to that in another
Indexes Allow quick access to information in the database
Views Are computed tables
Stored procedures Hold queries and commands that may be executed by any client

application (stored procedures are not available in the SQL
Anywhere Desktop Runtime system)

Triggers Assist in maintaining the integrity of the information in the
database (triggers are not available in the SQL Anywhere
Desktop Runtime system)

System tables Hold the information about the structure of the database

Sybase SQL Anywhere makes use of SQL Anywhere Version 5.0 as a Data Definition
Language (DDL) and Data Manipulation Language (DML). SQL Anywhere conforms to
SQL92 Entry level standards and has some features which are not part of standard SQL. That
is why in some situations I had to make decisions on how to implement some of the database
definitions that can not be defined in the same way they were defined in the relational data
model.

InfoMaker 5.0 was used as direct entry database tool by entering and executing SQL DDL
and DML statements (see appendix D) used to create and populate the delivery office
database in the Database Administration window. This is shown in Fig. 3.7 below as the
direct entry database tool. InfoMaker also contains an Open Database Connectivity (ODBC∗)
interface, this enables InfoMaker to access data sources for which an ODBC driver exist.

 ODBC is a standard database access method developed by Microsoft Corporation. The goal of ODBC is to
make it possible to access any data from any application, regardless of which DBMS is handling the data. ODBC
manages this by inserting a middle layer, called a database driver, between an application and the DBMS. The
purpose of this layer is to translate the application's data queries into commands that the DBMS understands. For
this to work, both the application and the DBMS must be ODBC-compliant; that is, the application must be
capable of issuing ODBC commands and the DBMS must be capable of responding to them.

25

Prepared by: Omer Dawelbeit, T0986935

Figure 3.7 Model showing use of InfoMaker as direct entry database tool for interaction
with Sybase SQL Anywhere DBMS

SQL Data Definition Statements

The naming convention being used for the SQL tables differs from the one that was used for
the conceptual data model, for example according to the convention I've used, the attribute
named PayNo is transformed to the column named pay_no. This is the common convention
for SQL names, and arises because SQL does not distinguish between upper and lower case
letters (unless enclosed in double quotes, such as “PayNo”), and underscore is the only non-
alphanumeric character allowed in SQL names.

Domains

I’ve started the database implementation by defining a set of domains to provide a common
definition that can be shared by a number of columns (see appendix D.1.1). This is
particularly useful when a domain is defined as more than just a data type, including both
constraints and default values, which has the benefit of ensuring consistency between
columns. For example I've defined the following domain for delivery office column that exists
in company_vehicle, walk, delivery_office and employee tables:

CREATE DOMAIN delivery_office_names AS VARCHAR(10)
CHECK (@col IN ('south', 'north', 'east', 'west'));

SQL Anywhere supports both CREATE DATATYPE and CREATE DOMAIN statements.
I’ve used the later because CREATE DOMAIN is the syntax used in the draft SQL/3 standard
[Sybase, Inc. 1995, ch.27, pp.6]. When defining a CHECK condition on a user-defined data

26

Prepared by: Omer Dawelbeit, T0986935

type in SQL Anywhere, any variable prefixed by @ is replaced by the name of the column
when the CHECK condition is evaluated. For example the work_status data type accepts
only ‘ft’ and ‘pt’ character strings:

CREATE DOMAIN work_status AS CHAR(2)
NOT NULL
CHECK(@col IN (‘pt’, ‘ft’));

Any variable name prefixed with @ could be used instead of @col. Any column defined as
work_status type accepts only ‘ft’ and ‘pt’ character strings unless it has a CHECK condition
explicitly defined.

The attribute of the data type can be overridden if needed by explicitly providing attributes for
the column. A column created on data type work_status with NULL values explicitly
allowed does allow NULLs, regardless of the setting in the work_status data type.

Tables Definition

The next step was to define the database table, using the SQL CREATE TABLE statement
(see appendix D.1.2). The general format of this statement in SQL Anywhere for a simple
table is:

CREATE TABLE <table-name> (<column-definition [column-constraint …]>,…,
PRIMARY KEY (column-name,…),
[UNIQUE (column-name, ...),]
[[NOT NULL] FOREIGN KEY [role-name] [(column-name, ...)]

 REFERENCES table-name [(column-name)] [actions],]
[CHECK (condition)]);

The non SQL terms used are defined as follows:

column-definition:

column-name data-type [NOT NULL] [DEFAULT default-value]

default-value:

This can be a string, a number, AUTOINCREMENT, CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, NULL, USER, or a (constant-
expression).

column-constraint:

CHECK (condition)

action:

ON [UPDATE | DELETE]...[CASCADE | SET NULL | SET DEFAULT |
RESTRICT]

The Delivery Office relational model contains 19 relations (Appendix C) that needed to be
transformed to SQL tables. The tables had to be created in a specific order; this is because of
the referential integrity between different tables, besides some of the table constraints and
referential integrity constraints were added later using the ALTER TABLE statement.

27

Prepared by: Omer Dawelbeit, T0986935

The general procedure I've used to create tables and constraints can be summarised in figure
3.8 below.

Figure 3.8. General steps for implementing tables and constraints used for the Delivery
Office database

Defining columns

The first step towards defining table was to define the columns and any associated constraints
such as 'NOT NULL'. The columns were either defined as SQL data type such as the
street_name definition in postal_address table, or defined on a domain such as the office
column on the same table:

28

Prepared by: Omer Dawelbeit, T0986935

CREATE TABLE postal_address
(post_code post_codes,
 building_no building_numbers,
 street_name VARCHAR(20) NOT NULL,

 postal_area VARCHAR(20),
 town VARCHAR(14) NOT NULL,
 walk_no walk_numbers NOT NULL,
 office delivery_office_names NOT NULL,
 PRIMARY KEY (post_code, building_no))!

A CHECK condition can be applied to values in a single column, to ensure that they satisfy
rules. These rules may be rules that data must satisfy in order to be reasonable, or they may be
more rigid rules that reflect organization policies and procedures. For example, consider the
constraint defined on the overtime_availability column in the employee table shown below.
This definition limits the values for overtime_availability to 'yes' or 'no' character strings.
I've also defined some default values for some of the columns such as the grade column with
default value 'opg'. I've defined some columns as VARCHAR and others as CHAR data types,
this was done to reflect a character string defined as CHAR has a fixed number of characters
such as driving licence numbers which have a fixed length of 16 characters. On the other hand
columns defined as VARCHAR such as the person names, which can vary in length, but not
to exceed 20 characters.

CREATE TABLE employee
 (pay_no employee_numbers,

employee_name person_names,
date_of_birth DATE NOT NULL,
date_of_entry DATE NOT NULL,

 grade VARCHAR(10) CHECK (grade IN ('opg','opgdriver','ex_phg')) NOT NULL DEFAULT
'opg',

phone phone_numbers,
badge_no VARCHAR(4),
skills LONG VARCHAR,
overtime_availability VARCHAR(3) CHECK (overtime_availability IN ('yes', 'no')),
office delivery_office_names NOT NULL,
house_no building_numbers,
post_code post_codes,
status work_status,
PRIMARY KEY (pay_no),
UNIQUE (badge_no),
// IsStaffedBy
FOREIGN KEY (office) REFERENCES delivery_office,
// defined as not null in the domain definition which reflects

 // madatory participation condition with regards to postal_address & delivery_office
// IsOccupiedBy

 FOREIGN KEY (post_code, house_no) REFERENCES postal_address)!

Declaring primary and alternate keys

The primary keys definition was a straightforward transformation of the primary keys from
the relational model as shown in employee table above. Alternate keys were defined using the
SQL UNIQUE constraints, however because SQL Anywhere imposes a NOT NULL on the
UNIQUE constraints I had to make some decisions about the implementing the alternate keys
which are allowed null in the relational model.

The only alternate keys declared in the relational model to represent the meaning of the data
are VehicleNumber and BadgeNo, both declared as not null, so there was no problem

29

Prepared by: Omer Dawelbeit, T0986935

implementing those. However the problem arose when implementing the alternate keys that
resulted from 1:1 relationships (HasCover, Covers, Permanently Covers, MayBe and IsA as
shown in Figure 3.9) representation in the relational model. When representing 1:1
relationships, one relation had the foreign key declared as an alternate key, however when the
participation condition is optional the alternate key needed to be allowed null. Because all the
1:1 relationships in Delivery Office conceptual data model are mandatory from one side and
optional from the other I've decided to modify the relational model so that the relation that
declares the foreign key for 1:1 relationship is on the mandatory side. This automatically
implied declaring the alternate key as not allowed null.

Figure 3.9 Part of the Delivery Office E-R diagram showing 1:1 relationships

However alternate keys defined in the FullTimeDuty, PartTimeDuty and NonWalkDuty
relations were not implemented using a UNIQUE constraint, because this would mean the
optional participation condition with regards to PermanentlyCovers would become
mandatory. The uniqueness of these columns was maintained using triggers4. The following is
a trigger that ensures that column duty_holder is unique in table full_time_duty:

CREATE TRIGGER add_modify_fulltime_duty
BEFORE INSERT, UPDATE ON full_time_duty
REFERENCING NEW AS new_full_time_duty
FOR EACH ROW
BEGIN

DECLARE invalid_duty_details EXCEPTION FOR SQLSTATE '99999';
IF ((new_full_time_duty.duty_holder IN (SELECT duty_holder FROM

 full_time_duty))
THEN

SIGNAL invalid_duty_details;
END IF;

4 SQL Anywhere provides triggers. A trigger is a procedure stored in the database that is executed automatically
whenever the information in a specified table is altered. Triggers are a powerful mechanism for database
administrators and developers to ensure that data is kept reliable.

30

Prepared by: Omer Dawelbeit, T0986935

END!

Using a CHECK constraint was not possible in this case, because it is a static constraint that
holds all the time, however a trigger is a dynamic constraint that is fired only when a table is
modified. In this case we need to check that every new added or updated tuple does not
contain a duty_holder value that exists on the table, thus ensuring the uniqueness of
duty_holder.

Declaring foreign keys

As shown in Figure 3.8, when defining tables foreign keys were either defined as part of the
tables definition if the referenced table existed or defined later after the referenced table was
created using ALTER TABLE statement. A column defined as a foreign had DEFAULT
NULL or NOT NULL constraint according to the participation condition from the referencing
table side. For example a DEFAULT NULL for the foreign key represents an optional
participation condition (as shown in the example below for licenced_employee table), on the
other hand NOT NULL represents a mandatory one.

CREATE TABLE licensed_employee
(license_no license_numbers,
 vehicle_size vehicle_sizes DEFAULT NULL,
 pay_no employee_numbers NOT NULL,
 vehicle_no vehicle_reg_numbers DEFAULT NULL,
 PRIMARY KEY (license_no),
 UNIQUE (pay_no),
 // IsA
 FOREIGN KEY (pay_no) REFERENCES employee,
 //IsDrivenBy
 FOREIGN KEY (vehicle_no) REFERENCES company_vehicle)!

As mentioned before it's not possible to define a foreign key duty_no in the duty_cover,
over_time and walk tables to reference to reference the three duty tables. This is because a
foreign key can only references one table. One way around this is to use a CHECK clause to
maintain referential integrity. I've declared a CHECK condition on the duty_cover table for
this purpose as follows:
ALTER TABLE duty_cover

ADD CHECK (
 (duty_no IN (SELECT duty_no FROM part_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM indoors_duty)))!

The same check was added to the over_time table, but not to the walk table because besides
maintaining the referential integrity the constraint needs to ensure that walk tuples with
column status equal 'ft' reference full_time_duty. And tuples with column status equal 'pt'
reference part_time_duty. This requires the use of the SQL IF construct, thus I've used the
following trigger to enforce this sophisticated CHECK conditions:

CREATE TRIGGER add_modify_walk
BEFORE INSERT, UPDATE ON walk
REFERENCING NEW AS new_walk
FOR EACH ROW
BEGIN

DECLARE invalid_walk_details EXCEPTION FOR SQLSTATE '99999';

31

Prepared by: Omer Dawelbeit, T0986935

IF (new_walk.status = 'PT')
THEN

IF (NOT (new_walk.duty_no IN (SELECT duty_no FROM
 part_time_duty)))

THEN
SIGNAL invalid_walk_details;

END IF;
END IF;

IF (new_walk.status = 'FT')
THEN
IF (NOT (new_walk.duty_no IN (SELECT duty_no FROM

 full_time_duty)))
THEN

SIGNAL invalid_walk_details;
END IF;

END IF;
END!

Summary of database tables

I've created the following tables5 by executing the CREATE TABLE statement shown in
Appendix D.1.2:

booked(week_no, pay_no)

company_vehicle(reg_no, vehicle_no, mot_due_date, vehicle_size, model, office_name)

compliant(reference_no, post_code, building_no, pay_no, details, date)

conduct(reference_no, conduct_type, notes, staff_no, date)

delivery_office(office_name, telephone_no, manager_name, building_no, post_code)

duty_cover(duty_no, cover, reason)

duty_second_part(duty_no, rotation_week, day_off, second_part)

employee (pay_no, employee_name, date_of_birth, date_of_entry, grade, phone, badge_no, skills,
overtime_availability, office, house_no, post_code, status)

full_time_duty(duty_no, duty_holder, day_off_cover)

licensed_employee(license_no, vehicle_size, pay_no, vehicle_no)

mail_drop(walk_no, office, drop_point, details, duty_no)

non_walk_duty(duty_no, pay_no, duty_details)

over_time(duty_no, pay_no, duration)

part_time_duty(duty_no, duty_holder, duty_hours)

postal_address(post_code, building_no, street_name, postal_area, town, walk_no, office)

private_vehicle(reg_no, model, color, license_no)

5 Rather than giving the complete CREATE TABLE or CREATE VIEW statements for each table and view, it is
simpler to specify the columns of a table or a view in the same way used for the attributes of entity types and
relations.

32

Prepared by: Omer Dawelbeit, T0986935

sick_absence(pay_no, date_commenced, reason)

walk(walk_number, office_name, walk_type, delivery_method, remarks, status)

week(week_no, quota)

Extra Tables

I've also created the following extra tables that doesn't exist in the conceptual data model:

current_week(week_no)

duty_cover_info(duty_no, reason, cover_type)

The table current_week should have only one row and only accessed through the following
procedure (see Appendix D.1.7):

// A procedure to set the current week in the finantial year
CREATE PROCEDURE set_week(IN weekno SMALLINT)

BEGIN
 UPDATE current_week
 SET week_no = weekno;

END!

This table stores the number of the current week in the financial year. This single value is then
used by different procedures, functions and triggers to query the database. To ensure this
works, access to table current_week needs to be restricted and the only access allowed
should be through the set_week() procedure.
The table duty_cover_info is a summary table used to store some data that involves some
complex derivation carried out by the process_duty_cover() procedure (see appendix D.1.7).
Again because the data in this table needs to be processed and joined with other tables access
to it needs to be restricted and only allowed through the process_duty_cover().

The database also contained some extra tables called system tables. These tables hold the
information about the structure of the database (database schema).

Defining constraints

The general constraints defined for the Delivery Office database can be summarised as
follows:

• Constraints used to represent mandatory participation conditions; at one end expressed as
NOT NULL for a foreign key and at the other end as more complex CHECK clause.
These were defined as follows for tables delivery_office and walk:

// represent mandatory participation with respect to IsStaffedBy
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office FROM employee))!

// represent mandatory participation with respect to ConsistsOf
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office_name FROM walk))!

// represent mandatory participation with respect to HasAsset
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office_name FROM company_vehicle))!

33

Prepared by: Omer Dawelbeit, T0986935

// represent mandatory participation with respect to IsAcollectionOf from Walk side
ALTER TABLE walk

ADD CHECK
(EXISTS (SELECT * FROM postal_address

 WHERE (postal_address.walk_no = walk.walk_number)
 AND (postal_address.office = walk.office_name)))!

• Constraints described in the constraints part of the conceptual data model (see appendix
B.3). I've used triggers when inserting or updating some of the tables. These triggers
combine all the constraints that affect the same table together. This is because triggers
have more advantages over the CHECK clause, first they can handle very sophisticated
constraints involving the IF construct, second they can dynamically update or perform an
operation on a table. For example, here is the trigger that ensures the total number of
tuples of table booked doesn't exceed the quota for a specific week:

// ensures that annual leave doesn't exceed the quota
CREATE TRIGGER add_annual_leave

BEFORE INSERT, UPDATE ON bookedholiday
REFERENCING NEW AS new_annual_leave
FOR EACH ROW
BEGIN

DECLARE leave_exceed_quota EXCEPTION FOR SQLSTATE '99999';
IF ((SELECT COUNT(pay_no) FROM bookedholiday WHERE

 bookedholiday.week_no = new_annual_leave.week_no)
>= (SELECT quota FROM week WHERE week.week_no =

 new_annual_leave.week_no)) THEN
SIGNAL leave_exceed_quota;

END IF;
END!

The following is the trigger that maintains all the general constraints that affects the
part_time_duty table:

CREATE TRIGGER add_modify_parttime_duty
BEFORE INSERT, UPDATE ON part_time_duty
REFERENCING NEW AS new_part_time_duty
FOR EACH ROW
BEGIN

DECLARE invalid_duty_details EXCEPTION FOR SQLSTATE '99999';
IF (

 //// ensures that duty_holder is unique
 (new_part_time_duty.duty_holder IN (SELECT duty_holder FROM
 part_time_duty))

 //// ensures duty_holder does not exist in full_time_duty or non_walk_duty
 OR
 (new_part_time_duty.duty_holder IN (SELECT duty_holder FROM

 full_time_duty))
 OR
 (new_part_time_duty.duty_holder IN (SELECT pay_no FROM

34

Prepared by: Omer Dawelbeit, T0986935

 indoors_duty))

 //// ensures that duty_no is a primary key across the subtypes of duty
 OR
 (new_part_time_duty.duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (new_part_time_duty.duty_no IN (SELECT duty_no FROM indoors_duty))

 //// ensure only part time employees can participate in PermanentlyCovers
 with part_time_duty

 OR
 ((SELECT status FROM employee WHERE employee.pay_no =

 new_part_time_duty.duty_holder) <> 'PT')

 //// ensure only employees and duties from the same office can participate
 in PermanentlyCovers

 OR
 ((SELECT LEFT (employee.office,1) FROM employee WHERE

 employee.pay_no = new_part_time_duty.duty_holder)
 <> (SELECT LEFT (new_part_time_duty.duty_no,1))))

THEN
SIGNAL invalid_duty_details;

END IF;
END!

The only constraint that was defined in a procedure is the constraint on the over_time table.
This constraint ensures only staff available for over_time can perform it, however, according
to the client this is a changing, because on some delivery offices staff might be persuaded to
do overtime if the operation requires. Besides the constraints on the over_time table may vary
from office to office such as controlling the duration of the overtime. I've created the
procedure add_over_time() that can be used for this purpose. All access to overtime table
should be restrict and controlled through procedures that contains the constraints which are
not part of the table and might change with time. Different procedures can be tailored for
different overtime restriction requirements.

On the other hand constraints that ensure the meaning of the data are included in a trigger
defined on the over_time table as follows:

 CREATE TRIGGER add_modify_over_time
BEFORE INSERT, UPDATE ON over_time
REFERENCING NEW AS new_over_time
FOR EACH ROW
BEGIN

DECLARE invalid_overtime_details EXCEPTION FOR SQLSTATE '99999';

 //// Make sure overtime is used to cover a vacant or absent duty
 IF (NOT (new_over_time.duty_no IN (SELECT duty_number FROM

 absent_duties_after_cover)))
 THEN

SIGNAL invalid_overtime_details;
 END IF;

 //// Make sure the employee performing the overtime is not absent from work
 IF ((new_over_time.pay_no IN (SELECT pay_number FROM

 sick_employees))
 OR

 (new_over_time.pay_no IN (SELECT pay_no FROM
 bookedholiday
 WHERE

35

Prepared by: Omer Dawelbeit, T0986935

 week_no = (SELECT week_no FROM current_week))))
 THEN

SIGNAL invalid_overtime_details;
 END IF;

 END!

Defining views

I've defined a set of views for the daily most used queries by the database users. Views have
advantages over using base tables directly, these can be summarised as follows:
• usability, because specific data required by users can be defined as a view, thus providing

a simplified way to access the data;
• flexibility, because a view enables changes to be made to base tables without affecting the

users' view of data, providing data independence;
• access control, because defining users' privileges for views, rather than base tables, allows

more precise control on the data made available to users.

Table 4.2 below summarises the Delivery Office database views and a brief description their
purpose. The actual view definitions are shown in Appendix D.1.4

Table 4.2 The Delivery Office database views and their descriptions

View columns Description

employee_car (employee_name, licence_no, reg_no,
model)

List of all employee who have private
vehicle and the vehicle details

sick_employees (name, office, pay_number, grade, phone,
address)

List some for sick employees including
full address which makes use of the
full_address () function

all_duties (duty_no, duty_holder, status) List of all duties their status and holders

employee_duty_walk (name, office, pay_number, grade,
duty_number, walk_type, delivery_method,
status)

List details of all duties, their holders and
walks

vacant_absent_duties (duty_number, reason, status) List details of vacant duties and duties
covered by absent staff

absent_duties_after_cover (duty_number, reason, status) From the list above only list those duties
which are not covered by duty cover

36

Prepared by: Omer Dawelbeit, T0986935

spare_employees (name, pay_number, grade, office,
status)

List some of the details of employees not
covering any duty

display_duty_walk_info ("Name", "Office",
"Pay_number", "Grade", "Duty_number",
"Walk_type", "Delivery_method", "Status",
"Reason", "Cover_type")

This is the duty coverage summary list,
the view is carried by joining
employee_duty_walk with
duty_cover_info

where_employees_live (name, office, pay_number, grade,
phone, address)

List some the details of all employees and
their addresses, also makes use of the
full_address () function

available_spare_employees (name, pay_number, grade,
office, status)

List some details for all spare employees
who are not absent from work

absent_employees (pay_no) List the pay numbers of all absent
employees

Defining functions & procedures

I've also defined some functions and procedures to be used to process the data stored in the
Delivery Office database. SQL Anywhere supports procedures and user-defined functions.
These can include control statements that allow repetition (LOOP statement) and conditional
execution (IF statement and CASE statement) of SQL statement. These procedures and
functions are then stored in the database for use by all application.

Using database stored procedures and function have advantages over using external ones
written in other programming languages. These benefits can be summarised as follow:

• Standardization: The action to be performed on the data is coded and stored in one place,
and can be called by any application. Any new changes to this action need only be made
in one place.

• Efficiency: Stored procedures provide efficiency over user process procedures because
only the results need to be sent to the user process and not all data.

• Security: Stored procedure can be use to restrict or define the action performed on the
data by all applications.

The Delivery Office database procedures and functions are summarised in Table 4.3 below.
The actual definitions are included in Appendices D.1.6 and D.1.7.

Table 4.3 The Delivery Office database procedures & functions and their descriptions

Procedure or function heading Description

FUNCTION duty_to_office() Takes a duty number and returns the delivery office to
which the duty belongs.

FUNCTION full_address() Takes a postcode and a building number and returns a
full address as a character string

PROCEDURE set_week() Sets the current week in the financial year, this should
the only access to table current_week

PROCEDURE add_over_time() Takes some values and enter then into the over_time
table. This should be the only ADD access to the

37

Prepared by: Omer Dawelbeit, T0986935

over_time tables. Also used to enforce the changing
over_time requirements.

PROCEDURE process_duty_cover() Used to populate the duty_cover_info and set the
cover_type column.

Table creation order

I've used the steps shown below in creating the Delivery Office database. I needed to organise
these steps and execute them in an order that ensures all referenced tables in foreign keys
definitions or in general constraints are available and populated. These steps include table
definition, definition of constraints, definition of referential integrity and the population of the
tables. Each table was created with primary and alternate key definition if that didn't involve
the use of a trigger and was immediately populated after creation, and because most of the
constraints such as triggers didn't exist at that time, I ensured all data entered is consistent and
valid with regard to the constraints to be defined. This was important because when triggers
are used, the database may already contain inconsistent data that goes unnoticed. Triggers
only come to action when they are created and they enforce conditions only when data is
added or modified in contrast to static constraints that hold all the time.

• Create all domains
• Create the postal_address table without defining the foreign key than references walk.
• Create the delivery_office table including foreign key, but without defining the general

constraints that represent the mandatory participation conditions with regards to HasAsset,
IsStaffedBy and ConsistsOf.

• Create the employee table including foreign keys.
• Create the walk table including foreign keys and the constraint that represent the

mandatory participation condition with regards to IsAcollectionOf.
• Alter table postal_address, add foreign key to reference walk.
• Create table compay_vehicle including foreign keys.
• Create table licensed_employee including foreign keys.
• Alter table delivery_office, define the constraints that represent the mandatory

participation conditions with regards to HasAsset, IsStaffedBy and ConsistsOf.
• Create table private_vehicle including foreign keys.
• Create table complaint including foreign keys.
• Create table conduct including foreign keys.
• Create table week.
• Create table booked including foreign keys.
• Create table sick_absence including foreign keys.
• Create table non_walk_duty including foreign keys, with defining the trigger.

38

Prepared by: Omer Dawelbeit, T0986935

• Create table full_time_duty including foreign keys, with defining the trigger.
• Create table part_time_duty including foreign keys, with defining the trigger.
• Create table duty_cover including foreign keys, with defining the trigger.
• Create table over_time including foreign keys, with defining the trigger.
• Create table duty_second_part including foreign keys.
• Create table mail_drop including foreign keys.
• Create table current_week.
• Create table duty_cover_info.
• Create the following triggers: add_annual_leave, add_modify_fulltime_duty,

add_modifiy_duty_cover, add_modify_over_time, add_modify_sick_absence,
add_modifiy_part_time_duty, add_modify_non_walk_duty, add_modify_walk

• Create database functions and procedures.
• Create database views.
Populating Tables

The tables were populated using INSERT INTO statement (Appendix D.2.1). Consider the
following example for the deliver_office table:

INSERT INTO delivery_office VALUES ('West','02476557263','G Sandeep','40','CV1 1AA')!

INSERT INTO delivery_office VALUES ('South','02476557264','D Snowdon','40','CV1 1AA')!

INSERT INTO delivery_office VALUES ('South','02476557264','D Snowdon','40','CV1 1AA')!

INSERT INTO delivery_office VALUES ('South','02476557264','D Snowdon','40','CV1 1AA')!

Now we can display the delivery_office table by executing the following SELECT statement:

SELECT * FROM delivery_office!

The resulting table is shown in table 4.1 below. The data of the Delivery Office database base
tables is included in Appendix E. And the SQL INSERT INTO statements used to populate
the tables is shown in Appendix D.2.1.

Table 4.1 delivery_office Table

office_name telephone_no manager_name building_no post_code
East 02476557261 Jon Campbell 40 CV1 1AA
North 02476557262 Steve Moore 40 CV1 1AA
West 02476557263 G Sandeep 40 CV1 1AA
South 02476557264 D Snowdon 40 CV1 1AA

Database files and indexes

For the delivery office database, I've created a local database by using InfoMaker. I've done
this by opening the database widow and selecting the option, Create Database. In the resulting
dialogue box, entitled Create Local Database (Figure 4.10), I've entered the database name as
'delivery' this is also the file name used to store the database. The default user ID and
password are 'DBA' (Database Administrator) and 'sql' respectively.

39

Prepared by: Omer Dawelbeit, T0986935

Figure 4.10 Create Local Database dialogue box

When a database is initialised, it is composed of one file (database_name.db). This first
database file is called the root file. All database objects and all data are placed in the root file.
For many databases, it is convenient to keep the database as a single file.

Each SQL Anywhere database file has a maximum size of 2 GB. To divide large databases
among more than one file the user can create a new database file, or dbspace, using the
CREATE DBSPACE statement. A new dbspace may be on the same disk drive as the root file
or on another disk drive. The user must have DBA authority to create new database files
[Sybase Inc. 1995 ch.15, pp.3].

When creating the Delivery Office database, the following two files were created
• delivery.db
• delivery.log

The file 'delivery.log' is used to store all changes to the database in the order that they occur.
Inserts, updates, deletes, commits, rollbacks, and database schema changes are all logged. The
transaction log is called a forward log file.

An index is a column or set of columns you identify for the purpose of improving database
performance when searching for the data specified by the index. The user can index a column
or set of columns if information from the columns will be needed frequently. Primary and
foreign keys are special examples of indexes. However for the Delivery Office database no
indexes were defined, this is because the database tables are small so it's quicker to search all
the rows of the tables than first search for an index entry and then retrieve just the rows
required.

40

Prepared by: Omer Dawelbeit, T0986935

Chapter 4

Results & Discussion

41

Omer Dawelbeit, 20/12/-3741
 Item3, this section is divided into two subsectionsOutcomes of the projectFurther topicsItem 3: What the outcomes were (20 marks)You should include the following.• Your technical results and conclusions, and an evaluation of them.• Any supporting information that is better in the report itself rather than in anappendix (see the information about appendixes below).For further information on this portion of your report you should read the materialrelating to your course in the section of this booklet entitled ‘Project-specificguidance’.When discussing what the outcomes were you should include appropriate items from the following list, together with any others you consider relevant for yourproject.• Implementation and testing, including discussion of your decisions on thetesting and validation of your design, and evidence that your design bothsatisfies the application requirements you identified and ensures satisfactoryinternal consistency.• An outline of what you learnt when you took one or two topics further.

Prepared by: Omer Dawelbeit, T0986935

4.1 Client requirements
One of the outcomes of the work carried out in this project is the Delivery Office database.
The development steps (Figure 4.2 in subsection 4.2.2) followed in this project aimed at
ensuring that the database has the following important properties:

• completeness in satisfying user requirements ensures that users can access the data they
want;

• maintaining integrity of the data, including both consistency (no contradictory data) and
correctness (no invalid data);

• having flexibility to change, that database can be changed to satisfy user requirements
without excessive effort;

• enabling execution efficiency ensures that users do not have to wait for long times when
accessing the data;

• providing usability ensures the ease of use of the data.

Most of the validation done was to ensure that the database maintains the integrity of the data,
i.e. all the constraints function as required by the client. Constraints were either implemented
using CHECK clauses or using triggers, and they were tested by trying to update the database
in a way that violated the constraints. Most of the testing went towards ensuring that the
tables resulted from the implementation of the Duty super type represent the meaning of data.
This was not easy because the concept of entity subtypes is not supported in the relational
schema model.

In the following subsection we discuss how the database was tested and validated inline with
the above properties to ensure that it meets the client's data and processing requirements.

4.1.1 Data requirements

The client data requirements were included in the statement of data requirements (Appendix
A). The database was developed according to those requirements, now it's the time to ensure
that the database satisfies those requirements.

42

Prepared by: Omer Dawelbeit, T0986935

The client required a list to maintain a record of its physical assets employees, vehicles,
walks, delivery offices and addresses. Besides records to maintain other administration tasks
such as a record of annual leave, sick leave, customer complaints and conduct of employees.
The following sample queries were used to ensure the database meets its requirements:

Purpose: Display all employees that work in the South delivery office
Query: SELECT * FROM employee WHERE office = 'South'!
Results:

Purpose: Display the names, pay numbers & licence numbers of all employees with driving
licences.

Query: SELECT employee_name, license_no, employee.pay_no FROM employee,
licensed_employee WHERE employee.pay_no = licensed_employee.pay_no!

Results:

employee_name license_no pay_no
M John JOHNA862088MA3ER 86961
E Magee MAGEE563232ER3OM 99856
S Mohammed MOHAM982365SM8TY 88974
E Francis FRANC981234EN1ZX 10088
M Thomas THOMA122334MT8BN 23771
M Philip PHILI657890MK0OI 78541
M Rushton RUSHT563123MH7WE 87961
Y Jones JONES501389YA8NM 12458
J Singh SINGH096354JS4CV 19700
J Wilcox WILCO455668JM1QW 54213
O Steven STEVE908765OD4TY 99471
S Fox FOXXY444908SP0TN 31692
J McCanze MCCAN012799JK5XY 10023
N George GEORG111090NJ9LP 77890
A Ahmed AHMED480546AM1TU 77564
S Michael MICHA009871SR6BG 58470

Purpose: Display the names, addresses and phone numbers of all employees that work in the
North delivery office in alphabetical order.

43

pay_no employee_name date_of_birthdate_of_entry grade phone badge_no skillsovertime_availabilityoffice house_no post_code status
23771 M Thomas 22/10/65 24/11/98 OPGDriver 1601 sign language for deaf employeesyes South 6 CV2 4BA FT
77890 N George 02/02/80 08/05/00 OPG 02476885965 5532 no South 105 CV6 5AH FT
77564 A Ahmed 25/06/62 09/01/80 OPG 07885641365 8542 no South 89 CV6 5AH FT
58470 S Michael 22/07/71 20/06/99 OPG 02476885414 2001 no South 50 CV2 4JO FT
55355 P James 23/05/76 08/10/98 OPG 02476100123 5103 yes South 20 CV3 5FK PT
96742 B Muhsin 25/07/77 03/09/00 ex_PHG 02476947586 3356 yes South 93 CV3 5FK FT
20903 B Chandler 29/10/78 10/07/01 OPG 07985252751 1976 yes South 322 CV3 2ZX FT

Prepared by: Omer Dawelbeit, T0986935

Query: SELECT name, phone, address FROM where_employees_live WHERE office = 'North'
ORDER BY "name"!

Results:

name phone address
A Ali 02476854124 65, The Avenue, Brownshill Green, COVENTRY, CV5 3SC
A Eaton 02476441230 89, Benedictine Road , Earlsdon, COVENTRY, CV4 4KB
A Wilford 02476737684 3, The Monks Croft, Alderman's Green, COVENTRY, CV2 4BA
E Francis 02476884736 69, The Avenue, Brownshill Green, COVENTRY, CV5 3SC
J McCanze 02476778830 5, Stoney Road , Upper Stoke, COVENTRY, CV2 1KY
R Sims 02476453788 1, Swifts Corner, Little Heath, COVENTRY, CV6 5RT
S Mohammed 07988614214 2, Swifts Corner, Little Heath, COVENTRY, CV6 5RT

Purpose: Display the names, pay numbers and offices of all absent employees.
Query: SELECT employee_name, employee.pay_no, office FROM employee, absent_employees

WHERE employee.pay_no = absent_employees.pay_no!
Results:

employee_name pay_no office
S Wesley 21652 East
R Sims 24661 North
S McDonald 25600 East
P James 55355 South
S Mohammed 88974 North
B Muhsin 96742 South

Purpose: Display the names licence numbers and car details of all employees who own cars.
Query: SELECT * FROM employee_car!
Results:

employee_name license_no reg_no model
E Magee MAGEE563232ER3OM M505 RAU Ford Escort
M Thomas THOMA122334MT8BN T485 NBV Vauxhall Vectra
O Steven STEVE908765OD4TY CK02MNA Peugeot 406
Y Jones JONES501389YA8NM DN51JKL Honda Civic
S Fox FOXXY444908SP0TN X981 SHR Nissan Micra
J McCanze MCCAN012799JK5XY D123 TEW Ford Fiesta
S Mohammed MOHAM982365SM8TY L459 ZCV Rover Tomcat
M Philip PHILI657890MK0OI P45 ERT Renault Clio
A Ahmed AHMED480546AM1TU J543 NAZ BMW 320i SE

Purpose: Display the company vehicles details for all vehicles that need to have an MOT
before December 2003.

Query: SELECT * FROM company_vehicle WHERE ((MONTH(mot_due_date) < 12) AND
(YEAR(mot_due_date) < 2003)) OR ((MONTH(mot_due_date) < 12) AND
(YEAR(mot_due_date) = 2003))!

Results:

reg_no vehicle_no mot_due_date vehicle_size model office_name
X467 GFD CV1 12/08/03 150 FORD

44

Prepared by: Omer Dawelbeit, T0986935

T765 VBC CV3 07/11/02 250 FORD North
Y543 RAD CV5 27/11/02 150 RENAULT South
Y786 MUY CV6 10/09/03 50 VAUXHALL North

4.1.2 Data processing requirements

The main data processing requirement for the D.O. is to be able to identify daily the duties
that are not covered, and to use staff to cover them on a temporary basis or on overtime. This
is the main task for the D.O. administration staff and is called duty coverage. The duty
coverage is done on a weekly and a daily basis (Appendix A). In this subsection we
summarise of the steps carried out to test the D.O. database against duty coverage
requirements. Figure 5.1 shows the activities in terms of the D.O database that need to be
carried out weekly for duty coverage.

45

Prepared by: Omer Dawelbeit, T0986935

Figure 5.1 Activity Diagram for the weekly operation of the Delivery Office database

Weekly operation for duty coverage

The following in an example of the steps that need to be carried out weekly on the D.O
database (Appendix 2.2):

1- Use the procedure set_week() to set the current week number of the financial year as
follows:

CALL set_week(2)!

2- Add any known sick employees to the sick_absence table, then display it:

INSERT INTO sick_absence VALUES('25600','28/10/02','Stomach bug')!

SELECT * FROM sick_absence!

46

Prepared by: Omer Dawelbeit, T0986935

pay_no date_commenced reason
24661 10/09/02 Cold and flu
96742 10/10/02 Bad back
25600 02/10/28 Stomach bug

3- Display the duty_cover table used to assign temporary staff to duties:

SELECT * FROM duty_cover!

duty_no cover reason
S007 58470 VAC
S004 20903 VAC
N007 24001 VAC
E001 19119 AL

Have a look at the vacant and absent duties as follows:

SELECT * FROM vacant_absent_duties!

duty_no reason status
N002 AL PT
S002 AL PT
S005 SL ID
N001 SL PT
S004 VAC FT
S007 VAC FT
N007 VAC ID
E007 VAC PT

Duty 'E001' is not present in the table anymore, which means the duty holder has
come back from annual leave (AL) this week. This can be checked by looking at the
booked table and displaying the name and duty holder pay number of duty 'E001':

SELECT * FROM booked!

week_no pay_no
2 55355
2 88974
3 54213
1 21652

SELECT name, pay_number, duty_number FROM employee_duty_walk WHERE
duty_number = 'E001'!

name pay_number duty_number
S Wesley 21652 E001

From the two tables above it's clear that 'S Wesley' was on holiday last week (week 1).
Now the tuple containing 'E001' is not required anymore in the duty_cover table. For
the other vacant 'VAC' duties in the duty_cover table the cover can carryon to this
week, so now the last row can be deleted as follows:

DELETE FROM duty_cover WHERE duty_no = 'E001'!

4- Now empty the over_time table:

47

Prepared by: Omer Dawelbeit, T0986935

DELETE FROM over_time!

5- Now call the procedure process_duty_cover() to populate duty_cover_info then
display duty_cover_info:

CALL process_duty_cover()!

SELECT * FROM display_duty_walk_info!

name office pay_number grade duty_number walk_typ
e

delivery_method status reason cover_type

East E007 PT VAC

Y Jones East 12458 OPG E003 Town Walk FT

P Smith East 20034 ex_PHG E005 ID

S Wesley East 21652 Opg E001 Town Walk FT

M Philip East 78541 OPG E002 Town Walk PT

M Rushton East 87961 OPG E004 Bulk Van PT

E Magee East 99856 OPGDriver E006 ID

North N007 ID VAC duty cover

J McCanze North 10023 OPG N003 Bulk Van FT

E Francis North 10088 OPGDriver N006 ID

R Sims North 24661 OPG N001 Town Walk PT SL

A Ali North 63263 ex_PHG N005 ID

A Wilford North 75632 OPG N004 Rural Cycle FT

S
Mohammed

North 88974 OPG N002 Town Walk PT AL

South S004 Bulk Van FT VAC duty cover

South S007 FT VAC duty cover

M Thomas South 23771 OPGDriver S006 ID

P James South 55355 OPG S002 Town Walk PT AL

A Ahmed South 77564 OPG S003 Rural Cycle FT

N George South 77890 OPG S001 Town Walk FT

B Muhsin South 96742 ex_PHG S005 ID SL

D
McRobbert

West 11543 OPG W003 Town Walk FT

J Singh West 19700 OPG W002 Town Walk FT

S Fox West 31692 OPG W004 Bulk Van FT

J Wilcox West 54213 OPG W001 Town Walk PT

M John West 86961 OPGDriver W006 ID

O Steven West 99471 ex_PHG W005 ID

6- By looking at columns reason and cover_type in the duty_cover_info table above we
can see there are still 5 duties to be covered (highlighted with yellow). Let us see if
there are any spare employees available:

SELECT * FROM available_spare_employees WHERE pay_number NOT IN (SELECT cover
FROM duty_cover)!

name pay_number grade office status
C Crane 19119 OPG West FT

The remaining duties to be covered can be checked as follows:

SELECT * FROM absent_duties_after_cover!

duty_number reason status

48

Prepared by: Omer Dawelbeit, T0986935

N002 AL PT
S002 AL PT
S005 SL ID
N001 SL PT
E007 VAC PT

'C Crane' can be assigned to one of these duties as follows:

INSERT INTO duty_cover VALUES ('N002', '19119', 'AL')!

Daily operation for duty coverage

Now the database is ready for the daily operation that adds overtime to cover the remaining
absent or vacant duties. The trigger defined on the over_time table will enforce that overtime
should be used to cover a vacant or absent duty and the employee performing the overtime is
not absent from work. Consider this example to validate the add_modify_over_time trigger:

CALL add_over_time('S002','55355',3)!

CALL add_over_time('E001','23771',3)!

When executing both statements failed to update the over_time table and InfoMaker displayed
the dialog box shown in Figure 5.2 below. The first statement failed because employee with
number '55355' exists in the booked table, and the second one failed because duty number
'E001' is not vacant or absent.

Figure 5.2 InfoMaker General error dialog box

The daily database operation is mainly entering any sick employees in the sick_absence table
and adding overtime to the over_time table. Consider the following example to cover the five
remaining duties mentioned in step 6 above:

CALL add_over_time('S002','23771',3)!

CALL add_over_time('S005','23771',5)!

CALL add_over_time('N001','10023',3)!

CALL add_over_time('E007','99856',3)!

To see the duty coverage summary we can call the procedure process_duty_cover() to
populate duty_cover_info then display duty_cover_info:

CALL process_duty_cover()!

SELECT * FROM display_duty_walk_info!

49

Prepared by: Omer Dawelbeit, T0986935

name office pay_number grade duty_number walk_typ
e

delivery_method status reason cover_type

East E007 PT VAC Overtime

Y Jones East 12458 OPG E003 Town Walk FT

P Smith East 20034 ex_PHG E005 ID

S Wesley East 21652 Opg E001 Town Walk FT

M Philip East 78541 OPG E002 Town Walk PT

M Rushton East 87961 OPG E004 Bulk Van PT

E Magee East 99856 OPGDriver E006 ID

North N007 ID VAC duty cover

J McCanze North 10023 OPG N003 Bulk Van FT

E Francis North 10088 OPGDriver N006 ID

R Sims North 24661 OPG N001 Town Walk PT SL Overtime

A Ali North 63263 ex_PHG N005 ID

A Wilford North 75632 OPG N004 Rural Cycle FT

S
Mohammed

North 88974 OPG N002 Town Walk PT AL duty cover

South S004 Bulk Van FT VAC duty cover

South S007 FT VAC duty cover

M Thomas South 23771 OPGDriver S006 ID

P James South 55355 OPG S002 Town Walk PT AL Overtime

A Ahmed South 77564 OPG S003 Rural Cycle FT

N George South 77890 OPG S001 Town Walk FT

B Muhsin South 96742 ex_PHG S005 ID SL Overtime

D
McRobbert

West 11543 OPG W003 Town Walk FT

J Singh West 19700 OPG W002 Town Walk FT

S Fox West 31692 OPG W004 Bulk Van FT

J Wilcox West 54213 OPG W001 Town Walk PT

M John West 86961 OPGDriver W006 ID

O Steven West 99471 ex_PHG W005 ID

Figure 5.3 Summary of employees, duties, walks and coverage

4.1.2 Summary

We have seen in this section how the database was tested and validated to ensure the data is
consistent with the client requirements. The testing was carried out in three stages. The first
stage was to ensure the integrity of the database including both consistency and correctness.
This stage went towards testing the constraints defined on the columns and tables.

Simple CHECK clauses to constraint the values of columns didn't need thorough testing
because SQL automatically check the values of the columns when table are updated.
However, constraints that involve complex CHECK clause and triggers needed very extensive
testing to ensure that these integrity constraints represent the constraints in the conceptual data
model.

Basically the test for this stage was by trying to violate these constraints and observe the
outcome. When a constraint definition was successful, SQL displayed either an integrity
constraint violation or general error dialog box. However when the constraint failed the

50

Prepared by: Omer Dawelbeit, T0986935

database was updated and nothing was displayed. In those situations I revised the SQL syntax
to correct the error.

The second stage was to ensure that the database satisfies the client's data requirements. The
testing in this stage consisted mainly of general queries that made use of the base tables and
views. The strategy followed in this test was to cover all the data requirements recorded in
'statement of the data requirements' (see appendix A), and some other queries the client is
likely to use. For this purpose I've defined some SQL functions that can be used to enhance
the data produced by general queries. For example, the full_address() function was used in
different queries to produce tables with columns of full addresses.

The third stage was to ensure the database meets the client data processing requirements. The
main client's data processing requirement is the duty coverage process. The main activities
carried out in this process are shown in Figure 5.1. These activities were tested using the daily
and weekly duty coverage scenarios outlined in subsection 5.1.2. These scenarios represented
weekly and daily database operation that aims at producing the data shown in Figure 5.3.

Finally, the testing carried out in the above three stages ensured that the D.O. database meets
its client requirements and maintains satisfactory internal consistency.

4.2 Review of the further topics

4.2.1 Overview of Query Processing

51

Prepared by: Omer Dawelbeit, T0986935

4.2.2 Implementation of Postal Addresses using SQL-99 User
Defined Types

One of the extra subjects investigated in this project was the implementation of postal address
using SQL99 user defined types. This topic looked at postal addresses as complex data that
have internal parts of interest. The topic also discussed the need for some data type to
represent postal addresses and assist in easily accessing their internal parts.

To better understand the nature and structure of postal addresses I had to carry out some
literature search to learn more about postal addresses. The postal addresses structure outlined
in Appendix F, was very useful when studying the internal structure of postal addresses and
deciding the string length required to represent those internal parts. For example, here in the
UK the postcode can be represented as SQL data type CHAR(7). I've also learnt that PAF is a
relational database that has tables containing addresses information, and having relationships
with each other maintained using foreign keys.

The topic summarised the levels of conformance for SQL standards and how SQL99 used a
different approach of performance by using a core functionality that is a prerequisite for any

52

Prepared by: Omer Dawelbeit, T0986935

sort of conformance. This is a superset of Entry SQL92, so implementations can go directly
from Entry SQL92 to Core SQL99. Next, I learnt about the new relational and object oriented
features in SQL99.

I've then considered the new data type ROW and how it can be used to implement columns or
tables of postal addresses. And moved on to investigate the User Defined Types (UDT) in
SQL99 and how types of postal addresses can be created, instantiated and extended using
inheritance. UDTs follow the object-oriented concept in programming, by providing
constructor to initialise object when they are created. Then I've considered the problem of
violating the first normal form by implementing ROW types or UDTs as columns, and how
it's an advantage to represent them as tables. This is logical, especially considering how both
tables and classes can map to entities in the ER model.

Finally, I've seen how the change in direction of traditional relational DBMSs towards
complex data required a change in their basic relational model. This change requires the
extended the relational model by incorporating a variety of features that make it object
relational. I've also learnt that this change presented some technical problems, one of which is
query optimisation when there is an unknown number of UDTs instead of a narrow range of
data types.

53

Prepared by: Omer Dawelbeit, T0986935

Chapter 5

 Overview of Query
Processing

5.1 Introduction to query processing:

The success of relational database technology in data processing is due, in part, to the
availability of nonprocedural languages (i.e., SQL), which can significantly improve
application development and end-user productivity. By hiding the low-level details about the
physical organisation of the data, relational database languages allow the expression of
complex queries in a concise and simple fashion. In particular, to construct the answer to the
query, the user does not precisely specify the procedure to follow. This procedure is actually
devised by a DBMS module (Figure 5.1), usually called a query processor. This relives the
user from query optimisation, a time-consuming task that is best handled by the query
processor, since it can exploit a large amount of useful information about the data (Valduriez
and Ozsu.1999, pp. 188).

54

Prepared by: Omer Dawelbeit, T0986935

Figure 5.1 Functional layers of a relational DBMS (Valduriez and Ozsu.1999, pp. 50).

The objective of query processing layer (Figure 5.1) [..] is to transform a high-level query on
a [centralised or] distributed database (seen as a single database by the users) into an efficient
execution strategy expressed in a low-level language on the local databases. An important
aspect of query processing is query optimisation (Valduriez and Ozsu.1999, pp. 192). Query
optimisation is necessary for queries that are specified in a high-level query language such as
SQL. This is because SQL queries are more declarative in nature. They specify what the
intended results should be, rather than identifying the details of how the result should be
obtained.

Because many execution strategies are correct transformations of the same high-level query,
the one that optimises (minimise) resource consumption should be retained (Valduriez and
Ozsu.1999, pp. 192). Some good measures of resource consumption are:

• total cost which is the sum of all times incurred in processing the operations of the query
at various locations in a network,

• response time, which is the time elapsed for executing the query.

5.2 The Query Processor

The query processor receives an SQL query as input, translates and optimises this query in
several phases into an executable query plan, and executes the plan in order to obtain the
results of the query. If the query is an interactive ad hoc query (dynamic SQL), the plan is
directly executed by the query execution engine and the results are presented to the user. If the
query is a canned query that is part of an application program (embedded SQL), the plan is

55

Prepared by: Omer Dawelbeit, T0986935

stored in the database and executed by the query execution engine every time the application
program is executed (Chamberlin et al. 1981; cited in Kossmann, 2000).

5.3 Architecture and operation of a Query Processor

The general architecture for a query processor is shown in Figure 6.1 below. This architecture
can be used for any kind of database system including centralized, distributed, or parallel
systems (Kossmann. 2000). Components of the query processor briefly described below.

Figure 5.2 Phases of query processing
(Haas et al. 1989; cited in Kossmann. 2000).

5.3.1 The Parser

The parser checks the query syntax to determine whether it is formulated according to the
syntax rules (rules of grammar) of the query language. The query must also be validated, by
checking that all attribute and relation names are valid and semantically meaningful names in
the schema of the particular database being queried (Elmasri and Navathe, 2001, pp. 585). All
the information needed by the parser is stored in the catalog.

After the parsing and validating, an internal representation of the query is then created,
usually as a tree data structure called a query tree. It is also possible to represent the query
using a graph data structure called a query graph. For example, Figure 6.2 shows a query
tree corresponding to the relational algebra expression for Query 1 on the D.O database
below:

Query 1:
SELECT A.employee_name, B.license_no, C.reg_no, C.model
 FROM employee AS A, licensed_employee AS B, private_vehicle AS C
 WHERE (A.pay_no = B.pay_no) AND (B.license_no = C.license_no)!

56

Prepared by: Omer Dawelbeit, T0986935

Figure 5.3 Query tree corresponding to the relational algebra expression for Query 1

The query tree is also called an operator tree. And is used to represent the relational algebra
query graphically for the sake of clarity. The operator tree has leaf nodes which represent
relationships stored in the database, and a non leaf nodes that is an intermediate relation
produced by a relational algebra operator. The sequence of operations is directed from the
leaves to the root, which represents the answer to the query.

5.3.2 The catalog

The catalog stores all the information needed in order to parse, rewrite and optimise a query.
It maintains the schema of the database (i.e., definition of tables, views, user-defined types
and functions, integrity constraints, etc.), the partitioning schema (i.e., information about
what global tables have been partitioned and how they can be reconstructed), and physical
information such as the location of copies of partitions of tables, information about indices,
and statistics that are used to estimate the cost of a plan. In most relational database systems,
the catalog information is stored [..] [in tables called system tables] (Kossmann. 2000).

5.3.3 Query Rewrite

Then the query rewrite transforms a query in order to carry out optimisations that are good
regardless of the physical state of the system. (e.g., the size of tables, presence of indices,
locations of copies of tables, speed of machines, etc.). Typical transformations are the
elimination of redundant predicates, simplification of expressions, and un-nesting of sub-
queries and views (Kossmann. 2000). This component also rewrites the query in relational
algebra. This is typically divided into the following two steps:

1- Straight-forward transformation of the query from relational calculus (SQL queries)
into relational algebra.

2- Restructuring of the relational algebra query to improve performance.

The transformation of a tuple relational calculus query into an operator tree can easily be
achieved as follows. First, a different leaf is created for each different tuple variable
(corresponding to a relation). In SQL, the leaves are immediately available in the FROM
clause. Second, the root node is created as a project operation involving the result attributes.

57

Prepared by: Omer Dawelbeit, T0986935

These are found in the SELECT clause in SQL. Third, the qualification (SQL WHERE
clause) is translated into the appropriate sequence of relational operations (select, join, union,
etc.) going from the leaves to the root [(see Figure 6.2 and Query 1)] (Valduriez and
Ozsu.1999, pp. 210).

5.3.4 The query optimiser

The query optimiser finds the optimal execution strategy for a query. However, in some case
the chosen execution plan is not the optimal (best) strategy, it is just a reasonably efficient
strategy for executing the query. Finding the optimal strategy is usually too time-consuming
except for the simplest of queries and may require information on how the files are
implemented and even on the contents of the files. This information may not be fully
available in the DBMS catalog.

The query optimiser is usually seen as three components: a search space, a cost model, and a
search strategy (Figure 6.3). The cost model predicts the cost of a given execution plan. [..]
(Valduriez and Ozsu.1999, pp. 232).

Figure 5.4 Query Optimization Process (Valduriez and Ozsu.1999, pp. 230)

5.3.5 Search Space

The search space is the set of alternative execution plans to represent the input query. These
plans are equivalent, in the sense that they yield the same result but they differ on the
execution order of operations and the way these operations are implemented, and therefore on
performance. The search space is obtained by applying transformation rules, such as those for
relational algebra. Because query execution plans are typically abstracted by means of
operator trees, for a given query, the search space can thus be defined as the set of equivalent
operator trees.

5.3.6 Search Strategy

The search strategy explores the search space and selects the best plan, using the cost model.
The search strategies can widely be divided into two classes:

58

Prepared by: Omer Dawelbeit, T0986935

• Exhaustive search: where potentially the whole space is examined, and

• Heuristic search: where some 'heuristics' or knowledge acquired through experience is
used to restrict the search to a smaller space.

The most popular search strategy used by most of the commercial database products in their
query optimiser is the dynamic programming, which is almost exhaustive. The advantage of
this strategy is that it assures the 'best' of all plans is found. It incurs an acceptable
optimisation cost (in term of time and space) when the number of relations in the query is
small (Valduriez and Ozsu.1999, pp. 232). However, the disadvantage of this strategy is that
it has exponential time and space complexity (Kossmann. 2000). The time and space required
takes the general form of An (where n is the number of relations in the query), which means
that the time and space can grow very large in the case of complex queries. In particular, in a
distributed system, the complexity of this strategy is prohibitive for many queries (Kossmann.
2000).

Alternative strategies that follow the heuristic search approach are the randomised strategies.
They avoid the high cost of optimisation, in terms of memory and time consumption, but do
not guarantee the best of all plans (Valduriez and Ozsu.1999, pp. 232).

5.3.7 The Plan

A plan specifies precisely how the query is to be executed. Plans are represented as trees. The
nodes of a plan are operators, and every operator carries out one particular operation
(subsection 6.1.6). The nodes of a plan are annotated, indicating, for instance, where the
operator is to be carried out in case of distributed query processing. Figure 5.5 below shows
the execution plan produced by InfoMaker when executing Query 1 above.

Figure 5.5 SQL statements execution plan

5.3.8 Plan Refinement/Code Generation.

This component transforms the plan produced by the optimizer into an executable plan. In
some systems, plan refinement also involves carrying out simple optimizations, which are not
carried out by the query optimizer in order to simplify its implementation.

59

Estimate 4 I/O operations (best of 6 plans considered)
Scan private_vehicle AS C sequentially
Estimate getting here 9 times
Scan licensed_employee AS B using primary key
for rows where license_no equals private_vehicle.license_no
Estimate getting here 9 times
Scan employee AS A using primary key
for rows where pay_no equals licensed_employee.pay_no
Estimate getting here 9 times

Subquery1:
Estimate 1 I/O operations
Scan company_vehicle using primary key
for rows where reg_no equals expr
Estimate getting here 1 times

Prepared by: Omer Dawelbeit, T0986935

5.3.9 Query Execution Engine.

This component has the task of running the query code, whether in complied or interpreted
mode, to produce the query result. This component also generates an error message if a
runtime error results.

5.4 Summary

In this section the architecture of the query processor (Figure 5.1) was briefly described. This
architecture can be used for both centralised and distributed query processing. We also seen
how query traverse through the various component of Figure 5.1. First, the query in SQL is
checked and validated by the parser using the information stored in the Catalog (system
tables) After that an internal representation is generated in a form of query tree that
corresponds to the relational calculus of the query.

This query tree is then transformed into an operator tree by the Query Rewrite component.
This operator tree has leaf nodes which represent relationships stored in the database, and a
non leaf nodes that is an intermediate relation produced by a relational algebra operator. This
operator tree is then used by the Query Optimiser to generate a search space. The search space
can be defined as the set of equivalent operator trees that generates the same input query.

The search space can be examined for the best execution plan in terms of the cost model. This
examination can be done using either exhaustive or heuristic search strategies. We also
considered an example of exhaustive search using the dynamic programming strategy. Which,
has an advantage of finding the best solution, and one of its disadvantage is that time and
space increase exponentially with the query complexity. Randomised strategies were
considered as an alternative to dynamic programming. Randomised strategies avoid the high
cost of optimisation, but do not guarantee the best of all plans.

Finally we've seen how plan generated by the query optimiser is refined and used to generate
the execution code that is used by the Query Execution Engine.

60

Prepared by: Omer Dawelbeit, T0986935

Chapter 7

Implementation of Postal
Addresses using SQL-99

User Defined Types

61

Prepared by: Omer Dawelbeit, T0986935

7.2.1 Introduction

Extending the ability of the DBMS and its query processor to do more things will extend the
ability to meet the demands placed upon it. This reduces the amount of the data that needs to
be transferred from the DMBS to the user process. As a result, each client or user process
needs to do less work to meet its requirement (Figure 5.1).

Figure 7.1 A simplified view of client-server processing

Take as an example, a company that maintains a mailing list that holds the account numbers,
names and addresses of its customers. These data are held in a customer table, which contains
thousands of tuples as follows:

Table 7.1: Customer Table

Account Number Customer Name Address
001234 J Smith 12 Warwick row, COVENTRY, CV5 3RR
901159 P McDonald 56 Cowley Road, DONCASTER, DN7 2SD
562098 A Singh 90 Cross Avenue, LONDON, N7 2WW

The address column could merely be defined as a character type:

CREATE DOMAIN postal_addresses VARCHAR(100);

and then create the table as follows

CREATE TABLE Customer
(account_number INTEGER,
 customer_name VARCHAR(12),
 address postal_addresses,
 PRIMARY KEY account_number);

Now imagine that the company wants to send some sale catalogues to all customers living in
Doncaster. Transferring the whole table to the user process, which then searches the data for
all the customers living in Doncaster, can do this. However this is quite inefficient in case that

62

serverclient
result

request

user process DBMS

Prepared by: Omer Dawelbeit, T0986935

the customer table is large, and that the user process resides on a computer other than the one
containing the table by sending the whole table across the network.

Another option would be to use the DBMS build-in functions or user-defined functions that
resides in the database alongside the data, or use external functions written in other
programming languages and can be called by the DBMS. In all three cases, a function may
use one or more parameters of a predefined data type but it can return only one value of a
given data type. This raises the demand for some structured data types that can be
manipulated as an object. Objects that can be stored in variables, passed as arguments to
routines and returned as return values from function invocations and more than that can
provide access to its internal parts. These data types can be used to represent complex data
such as postal addresses that have subcomponents of interest (street, town, post code, …etc.).

In this section we briefly discuss the new features provided in SQL3 that supports User
Defined Data types (UDTs), and how these UDTs can be used to implement complex data
such as postal addresses.

7.2.2 Introduction to postal addresses

Postal addresses are an example of complex data because they have internal attributes such as
streets, towns, counties and postcodes. These internal attributes have structure of interest and
values that need to be stored, retrieved and processed [Appendix F].

Nowadays it's a legal requirement for everyone who wants to open a bank account, buy a car,
or shop online to have a postal address. So postal addresses are stored in many database
systems, such as mailing lists, credit records, bank accounts, insurance records, …etc. to
mention a few. And to complicate the issue further a postal address might have a correct
format and at the same time be invalid. This is because a complete postal address represents a
property or a post box, which is a physical location that can be located and visited by the
postal staff.

Consider the following addresses,

50 Hampton Road
Foleshill
COVENTRY
CV6 5GE
WEST MIDLANDS
UK

1 Paradise Way
Cowley
OXFORD
OX4 1DL
OXFORDSHIRE
UK

(a) A valid postal address (b) An invalid postal address

Figure 6.2 An example of a valid and invalid postal addresses

While the format of both addresses is correct, address (b) is invalid because it does not
represent a real address. From the discussion above it's quite clear that there a need to validate
postal addresses before storing them to ensure the integrity of the database. Checking these
postal addresses against a standard database provided by the postal system carries out this
validation. Here in the UK, Royal Mail provides what is called the PAF (Post code Address
File) which contains over 26 million UK addresses. These addresses are stored in a relational
format and sold by Royal Mail. In the United States a similar database called AIS (Address
Information System) is provided by the US postal service.

63

Prepared by: Omer Dawelbeit, T0986935

7.2.3 SQL Standards and levels of conformance

SQL standard is defined jointly by the ISO (International Organisation for standardisation)
and ANSI (the American National Standards Institute). [..]. Here is the list of the major ANSI /
ISO SQL standards:

• SQL86: This provided a minimum functionality that all existing products had in
common. Hence, it basically standardised syntax that was somewhat at variance.

• SQL89: This made only one major change to SQL86, which was to add support
for mechanisms to enforce foreign key relationships.

• SQL92: This was a major update of the standard. Instead of simply certifying
and standardising the overlap among existing products, the ISO specified future growth
for the language, including much functionality that had not yet been implemented by
anyone, at least not in the way specified. Since conforming to this standard is rather
ambitious, the ISO specified three distinct levels of conformance: Entry, Intermediate,
and Full [Gruber, 2000, pp. 21-22]. At the time of writing most commercial database
vendors are still at Entry level, with some features from higher levels thrown in. For
example SQLAnywhere conforms to SQL92 Entry level standards, but have features
from higher levels such as cursors.

• SQL99: This is the new standard [..], it further extends SQL92 to include
integration with object-oriented approaches, programmatic extensions, and other features.

SQL92 was structured into three levels of conformance so that implementers could conform
to it gradually. As it turns out, most implementers have got stuck at Entry level because they
are primarily interested in focusing on proprietary features. Hence, SQL99 takes a different
approach. It uses a Core functionality that is a prerequisite for any sort of conformance. This
is a superset of Entry SQL92, so implementations can go directly form Entry SQL92 to Core
SQL99. Beyond that functionality are several types of enhanced conformance.
Implementations that support Core can also support any, all, or none of the enhanced levels.
Core conformance also requires that the DBMS support either Embedded SQL or directly
coded modules [Gruber, 2000, pp. 474].

7.2.4 SQL99 and the support for complex data

SQL99 new features can be crudely partitioned into: relational features and object-oriented
features.

Relational features are features that relate to SQL's traditional role and data model. These
features are often divided into about five groups:

• New data types
• New predicates
• Enhanced semantics
• Additional security
• Active database (provided through triggers)

64

Prepared by: Omer Dawelbeit, T0986935

Object oriented features: Some of the features that fall into this category were first defined in
the SQL/PSM (Persistent Stored Modules) standard published in late 1996-specifically,
support for functions and procedures invocable form SQL statements. SQL99 enhances that
capability, called SQL-invoked routines, by adding a third class of routine know as methods
[Eisenberg and Melton, 1999, pp. 134].

SQL/PSM, refers to procedural extensions to SQL that make it computationally complete and
therefore suitable for the development of full applications. More commonly, these extensions
will be used to create more sophisticated standard operations [such as functions and
procedures] that can be invoked by any application that can access the database [Gruber,
2000, pp.475]. Some proprietary products already support this, such as SQLAnywhere
DBMS.

Other object oriented features include the support for UDTs (user-defined datatypes). Users
can now define their own data types by sub-classing the given types or by creating new
structured types that behave like objects in the object oriented world. Along with defining the
type, the user can specify functions that can be applied to the type or methods that are
included in it. These functions can be used in SQL statements and the values they return
referenced in predicates [Gruber, 2000, pp.479].

7.2.5 Implementation of postal addresses

We are going to consider some of SQL99 features that can be used to implement complex
data, taking postal addresses as an example. This can be done in two ways; first by using the
new build-in data type ROW, or by declaring a Structured User Defined Type (UDT).

A new data type supported in SQL99 is the Row data type, a composite type that contains one
or more fields. The complete rows can be stored in variables, passed as arguments to routines
and returned as return values from function invocations. It's possible to create tables whose
tuples are of a particular row type, this gives database designers the additional power of
storing structured values in single columns of the database. A row type may be defined using
the syntax:

CREATE ROW TYPE row_type_name (<component declarations>);

In the case of postal addresses a row type can be created in two ways:

1- Create a row type with a name assigned to it as follows:

CREATE ROW TYPE postal_address_t
 (building_number CHAR(4),
 street CHAR(80),
 locality CHAR(35),
 post_town CHAR(30)
 post_code CHAR(7)
);
Then a table of postal addresses can then be declared based on the row type declaration
with the building number and the postcode as a primary key as follows:

65

Prepared by: Omer Dawelbeit, T0986935

CREATE TABLE postal_address OF postal_address_t
 (PRIMARY KEY (building_number, post_code));

We can then use SQL INSERT statement to populate the table as follows:

INSERT INTO postal_address
VALUES('89', 'Nuffield Road', 'Foleshill', 'Coventry',

'CV6 5DD');

2- Create a table with some columns containing row values. This can be used to create a
table that holds both customers' details such as first name, surname, date of birth, account
numbers and their addresses we can use the following CREATE TABLE statement:

CREATE TABLE customers
 (account_no INTEGER,

 full_name ROW (first_name CHAR(20),
 surname CHAR(20)),

 date_of_birth DATE,
 postal_address ROW (building_number CHAR(4),

 street CHAR(80),
 locality CHAR(35),

 post_town CHAR(30)
 post_code CHAR(7)),

 PRIMARY KEY account_no
);

To populate the table we can use the SQL INSERT statement as follows:

INSERT INTO customers
VALUES(10024, ('John', 'Smith'), 19/08/76, ('89',

'Nuffield Road', 'Foleshill', 'Coventry', 'CV6
5DD'));

The question now is how can we reference components of tuples in order to use them in
queries. [To answer this], SQL 3 uses a double dot notation to build path expressions that
refer to the components of tuples [Elmasri and Navathe, (2001),pp. 454]. For example the, the
query below retrieves the account numbers of customers living in Sheffield from the
customers table.

SELECT customers.account_no
FORM customers
WHERE customers.postal_address..post_town = 'Sheffield';

In SQL3 a construct similar to class definition is provided whereby the user can create a
named user-defined type with its own behavioural specification and internal structure; it is
know as an Abstract Data Type (ADT). The general form of an ADT specification is:

CREATE TYPE <type-name> (
list of component attributes with individual types

66

Prepared by: Omer Dawelbeit, T0986935

declaration of EQUAL and LESS THAN functions
declaration of other functions (methods));

An ADT is a database object and therefore resides in a schema like a table or a view. To
create an ADT we can use the above CREATE TYPE statement; to destroy one we can use
DROP TYPE. Here is an example of CREATE TYPE to implement a postal address:

CREATE TYPE general_postal_address_t AS
 (building_number CHAR(4),
 street CHAR(80),
 post_town CHAR(30),
 NOT INSTANTIABLE,
 NOT FINAL
);

Since it has several attributes, this is a structured UDT. The reason the UDT is declared as
NOT FINAL is that we intend to inherit from this type and make it a superclass; the reason
we did not make it instantiable is that we intend to use it as an abstract6 superclass. Now we
can create a post code UK address or a foreign address by inheriting from the abstract class
general_postal_address_t as follows:

• A post code UK address

CREATE TYPE uk_postcode_address_t UNDER
general_postal_address_t AS
 (locality CHAR(35),
 post_code CHAR(7),
 INSTANTIABLE,
 FINAL
);

• United States Address:

CREATE TYPE us_zip_address_t UNDER
general_postal_address_t AS
 (state CHAR(2),
 zip_code CHAR(5),
 INSTANTIABLE,
 FINAL
);

Any complex types of postal addresses for example BFPO addresses or other foreign
addresses can be created using inheritance.

Now let us consider the support SQL3 gives towards instantiating and processing these UDTs.
To instantiate (create instances) a class, we would use a constructor method that is
automatically created by SQL3. Here is an example:

6 abstract class is a class that is not intended to have instances and in which some or all of its
methods may be undefined. Abstract classes are used to define common structure for its subclasses

67

Prepared by: Omer Dawelbeit, T0986935

DECLARE postal_address uk_postcode_address_t;
SET postal_address = uk_postcode_address_t();

This statement makes use of the partial procedural features set that is part of the Basic Object
Support (BOS) [in SQL3], specifically the use of variables, which, under BOS, can be of
UDT datatypes. The DECLARE statement creates a variable to hold our new instance. The
constructor for the UDT is uk_postcode_address_t(). Therefore the SET statement creates a
new uk_postal_address_t object and stores it in the stud1 variable [Gruber, 2000, pp.490].

UDTs can function either as column values or as entire tables. In the former case, they violate
the first normal form [..]. In any case, mapping UDTs to tables is a bit more logical, especially
considering how both tables and classes can map to entities in the ER model [Gruber, 2000,
pp.490].

The syntax to CREATE a typed table is rather simple:

CREATE TABLE post_addresses OF
 uk_postcode_address_t;

The question now is how to access the attributes of a UDT. To answer this SQL3
automatically creates what is called mutator and observer methods. Consider the following
example:

SET postal_address =
 uk_postcode_address_t.building_no('2a');
SET postal_address =
 uk_postcode_address_t.street('Severn Way');
SET postal_address =
 uk_postcode_address_t.locatlity ('Grimsby');
SET postal_address =
 uk_postcode_address_t.post_code('DN1 3KL');
SET postal_address =
 uk_postcode_address_t.post_town('DONCASTER');

The mutators such as uk_postcode_address_t.post_code() and
uk_postcode_address_t.post_town() are used to the values of the attributes of the object stored
in post_address. The build-in mutator methods are named after the attributes they affect. To
put the information held in post_address into the table post_addresses, we would use an
INSERT statement, like this:

INSERT INTO post_addresses
 VALUES(post_address.building_no,
 post_address.street, post_address.post_town,
 post_address.locality,
 post_address.post_code
);

68

Prepared by: Omer Dawelbeit, T0986935

To retrieve values from attributes we use the observer method. An observer method
automatically takes the name of the attribute on which it works. The DBMS tells the
difference between a mutator and an observer by looking at how the method is used. Consider
the following example to retrieve the post towns from the post_addresses table:

SELECT post_address.post_town
 FROM post_addresses;

7.2.5 Summary

In the above sections we have seen how the new features in SQL3 can be used to implement
complex data such as postal addresses. We have also seen examples of postal address UDTs
functioning either as column values or as entire tables. In the former case, they violate the
first normal form because tables having columns defined as UDT may be multi-valued such
as in postal addresses where a street and a town depends on the postcode and the building
number not on the primary key for the table. However, some observers recognise this as just
another "decomposable" data type [Eisenberg and Melton ,1999]. In any case, mapping UDTs
to tables is a bit more logical, especially considering how both tables and classes can map to
entities in the ER model

Finally, we have seen how the new features in SQL3 moved towards supporting complex data
by adopting object-oriented approaches such as UDTs. On the other hand traditional
RDBMSs (Relational Database Management Systems) based on SQL2 standards support
complex queries and simple data (Figure 5.3). This is true because although SQL2 supports
date and time types, this can be simple data compared with to the complex UDTs that can be
defined under SQL3.
To move towards complex data, complex query (Figure 5.3), basic relational model of the
RDBMSs need to be extended by incorporating a variety of features that make it object
relational. The new DBMSs that belong to this category are called ORDBMSs (Object-
Relational Database Management Systems). This change in direction presents a number of
technical problems. For example query optimization changes when there may be an unknown
number of UDTs instead of the narrow range of numbers, characters and date.

69

Prepared by: Omer Dawelbeit, T0986935

Figure 6.3 A change of direction for SQL to handle complex data

70

Prepared by: Omer Dawelbeit, T0986935

Chapter 8

 Conclusion

71

Omer Dawelbeit, 20/12/-3741
 A conclusion, which may also cover some or all of item 4.Item 4: Reflection (15 marks)You should include the following.• The extent to which you succeeded in what you set out to do.• The value of what you did in relation to the field.• The scope for further work.

Prepared by: Omer Dawelbeit, T0986935

8.1 Review of the project activities
This project followed the general activities used for software development shown in Figure
7.1 below. The five activities of establishing requirements, analysis, design, implementation
and testing are the 'backbone' of the software development process. Project management and
quality management are the two additional activities that hold the process of development
together.

Figure 8.1 General iteration model for software development

The work on the project started with developing a project proposal, and based on this proposal
I've used some of the project management techniques to develop a plan for the work on the
project. This plan divided the work into phases and each phase included a number of tasks,
and to monitor progress key events such as TMAs, and milestones such as the production of
conceptual data model were identified. Based on these phases, tasks and key events a project
schedule was constructed using a Gantt chart (Figure 4.1).

The database development side of project phases were based on activities outlined in Figure
4.2; these phases were establishing requirements, data analysis, database design,
implementation and testing. The process followed for the design is shown in Figure 4.6, this
process involved revising the outcome of each activity and use any changes to modify the
conceptual data model and propagate the change down the development process.

The database development activities started with establishing the client requirements and the
outcome of it was the statement of data requirement (Appendix A); this statement summarised
the client data and data processing requirements. The statement was also checked with the
client to ensure nothing was left out. Using the statement of data requirements I started the
data analysis activity which resulted in the production of the conceptual data model

72

Prepared by: Omer Dawelbeit, T0986935

(Appendix B). One of the major decisions I took was the use entity subtypes to understand the
data better.

Using the initial conceptual data model I've developed the relational data model which is the
specification of the logical schema (Appendix C). The activities I undertook were to represent
entities, relationships and constraints. Relations resulted from entities, however some of the
relations resulted from resolving m:n relationships. Relations used to represent entity subtypes
were based on the sub entities and not the super ones. Foreign keys were used to represent
relationships, however in the case of relationships between entities and super-types it was not
possible to use a foreign key definition. This is because a foreign key can only represent one
relation. In these case the referential integrity was maintained using a general constraint.

The implementation stage required transforming the relations into SQL tables using CREATE
TABLE statements. During the implementation stage some decisions had to be made due to
the implementation of SQL Anywhere; for example, the UNIQUE definition in SQL
Anywhere require a NOT NULL too. In contrast the relational model specified some of the
alternate keys as not null. This affected two issues, the first design issue is on which table the
alternate key used to represent 1:1 relationships need to be placed. The second
implementation issue was the use of triggers and CHECK clause to implement alternate keys.

Triggers were heavily used in the implementation activity to represent dynamic and
sophisticated constraints. Functions and procedures were used to implement the client's data
processing requirements. InfoMaker 5.0 was used as a direct entry tool to execute the D.O.
SQL DDL and DML (Appendix D).

The final stage was testing the database to ensure it both satisfies the client's requirements and
maintain an internal consistent state. The database integrity was tested invalid and
inconsistent data to ensure all triggers and table constraints containing queries functions as
required. On the other hand the client's data requirements were tested by running some
SELECT queries (subsection 4.2.1). Some of these queries were used to select data from base
tables and views (Appendix E), others were used to select data that was either explicitly
expressed in the requirements or likely to be executed by the client. In either case the tests
ensured the database completeness.

The client's data processing requirements were tested by using daily and weekly scenarios of
the duty coverage process. The weekly activity diagram for the D.O. database is shown in
Figure 5.1. The activity diagram was used to write a set of queries that involved the use
procedures and functions. The result of these queries was the summary provided in Figure
5.3.

The work carried out in this project demonstrated the use of database development techniques
to provide a solution to a real problem. Not only that but also gave an example of how
ambiguity can arise during the process of data analysis and how these can be resolved by
further discussing them with the client. The project also shown that during database
development some decisions might need to be made based on many factors. These decisions
can be assessed against any alternatives, and choosing the approach that provide more
advantages in terms of efficiency, usability, flexibility, and so on.

The use of entity subtypes as a powerful way of representing and understanding complex
situations was explored in this project. The project proved that in some situations the

73

Prepared by: Omer Dawelbeit, T0986935

implementation of entity subtypes involves quite complex constraints which required the use
of triggers. Although the complexity involved in implementing entity subtypes, it might be an
advantage over not using them and ending with a situation where data can't be understood.

The project also gave an example of modelling and implementing postal addresses based on
the postal_address table in the D.O. database. This demonstrated an approach in which postal
addresses can be stored as a table that can be referenced from other tables using building_no
and post_code as foreign key. This approach can be used in practice with DBMSs that does
not support UDTs.

This approach was preferred over other techniques such as representing postal address as a
string or including the address columns in other tables because it has two advantages. First, it
provides a way where the address sub components can be accessed directly in queries without
the need for complex functions. Second, this approach avoids the transitive dependency
introduces when including all the postal_address columns in other tables that have primary
keys other than building_no and post_code.

The project looked briefly at the new features in SQL99 and how these can be used to
implement postal addresses. Features such as ROW data type and UDTs were briefly
described and backed with practical examples. This work represents a valuable foundation
that can be used to change the way entity subtypes are implemented. By providing UDTs that
acts as super classes, subclasses can inherit structure and behaviour and this way entity
subtypes can be directly implemented as subclasses of UDTs. These UDTs can then be used
as a table in the database. For example, the GeneralPostalAddress entity and its subtypes in
the E-R diagram shown in Figure 7.2, can be implemented using the types
general_postal_address_t, uk_postcode_address_t, us_zip_address_t described in subsection
6.2.5.

Figure 8.2 Cusomer and GeneralPostalAddress E-R diagram

8.2 Suggestions for Further Work

8.2.1 Access control for the D.O database

The capability of the D.O database can be extended if time allows, to include access control
for the Delivery Office database. This will involve the identification of all database users and
their access rights (privileges). Because the only creator of tables in the database is the DBA,
he or she can grant privileges. This allows specified users to perform certain actions on the
database. The DBA can also add new users to the database by using SQL Anywhere GRANT

74

Prepared by: Omer Dawelbeit, T0986935

CONNECT statement. For example, the following SQL statement can be used to add a new
user to the D.O database, with user ID north_admin and password welcome:

GRANT CONNECT TO north_admin IDENTIFIED BY welcome;

Now the DBA can grant privileges on tables, views or procedures using the following SQL
statement:

GRANT <privileges> ON <table/view/procedure> TO <user>;

<privileges> includes the following:

EXECUTE (the only privileges for procedures), ALTER, DELETE, INSERT,
REFERENCES, SELECT, UPDATE and ALL

Privileges can be granted on views and procedures instead of base tables for extra and tailored
security, this may be to limit access to portions of a table in the case of views or to strict the
manner in which a table can be modified in case of procedures.

For the D.O database extra views can be defined to select only the data relevant to one of the
delivery offices. The DBA can then grant access on these manager and administration staff of
that delivery office. For example, the following SQL statements creates a view that selects
only some the information for the North delivery office employees from the employee table
and grants access on it to the administration staff of that office:

CREATE VIEW north_employees
("name", pay_number, grade, phone, "address", skills, overtime_availability, status) AS
SELECT employee_name, pay_no, grade, phone, full_address(house_no, post_code), skills,

overtime_availability, status
 FROM employee WHERE office = 'North';

GRANT SELECT ON north_employees TO north_admin;

8.2.2 An application process for the D.O database

For the D.O database to be used by users who doesn't know SQL an application process
needs to be developed. This application process can provide a Graphical User Interface (GUI)
to make accessing and using the database easy. Not only that but the application process can
also provide added security and control. An application process can be developed using any
of the commercial Integrated Development Environment (IDE) such as Borland Delphi or
Borland C++ Builder.

Both IDEs offer database visual components library that can be used to develop an
application process to access the databases. These database components have default
behavior that enables them to perform useful functions with little or no programming.

75

Prepared by: Omer Dawelbeit, T0986935

The IDE Component palette provides two types of database component that can be used to
connect to the database, retrieve information, update the database or execute stored
procedures:

• The Data Access components contain objects that simplify database access by
encapsulating database source information, such as the database to connect to, the tables
in that database to access, and specific field references within those tables.

• The Data Control components contain data-aware user interface components for
displaying database information in forms. Data Control components are like standard user
interface components, except that their contents can be derived from or passed to database
tables.

76

Prepared by: Omer Dawelbeit, T0986935

References & Bibliography

References:

[1] Valduriez, P. and Ozsu, M. (1999) Principles of Distributed Database Systems, 2nd
Edition, New Jersey, Prentice Hall.

[2] Gruber M. (2000) Mastering SQL, Sybex International.

[3] Elmasri, R. and Navathe, S. (2001) Fundamentals of Database Systems, 3rd Edition,
Addison-Wesley.

[4] Eisenberg, A. and Melton J. (1999) 'SQL: 1999, Formerly Known as SQL3' ACM
SIGMOD Int. Conf. on Management of Data 28, 1, pp. 131–138.

[5] Kossmann, D. (2000) 'The State of the Art in Distributed Query Processing' ACM
Computing Surverys 32, 4, pp. 422–469.

77

Prepared by: Omer Dawelbeit, T0986935

[6] Royal Mail (2000) 'The Complete PAF Digest Issue 5'

Available online at:
http://www.royalmail.com/docContent/other/Downloadable_Files/PAF_Digest_Issue_5_0.pdf

[7] Sybase, Inc. (1996) Sybase SQL Anywhere User's Guide Ver. 5.0, Copyright © 1991-
1996 by Sybase, Inc. and its subsidiaries. All rights reserved. Printed in the United States
of America.

[8] OU (1998) 'Relational Datbases' M358 course text, The Open University, Walton Hall

[9] Haas, L., Freytag, J. C., Lohman, G., And Pirahesh, H. 1989. 'Extensible query processing
in starburst'. ACM Sigmod Int. Conf. on Management of Data (Portland, OR, USA,
May), pp. 377–388.

[10] Chamberlin, D., Astrahan, M., King, W., Lorie, R., Mehl, J., Price, T., Schkolnik, M.,
Selinger, P., Slutz, D., Wade, B., And Yost, R. 1981. 'Support for repetitive transactions
and ad hoc queries in System R' ACM Transactions on Database Systems 6, 1 (March),
pp. 70–94.

Bibliography
[1] Skills in Accessing, Finding, and Reviewing Information (SAFARI) course online, the

Open university
http://sorbus.open.ac.uk/safari_ou/contents.htm

[2] Field, M. and Keller, L. (1998) Project Management , Thomson Learning

[3] Manola, F. and Sutherland, J. (2002) 'SQL3 Object Model' available online at:
http://www.objs.com/x3h7/sql3.htm
Accessed November 2002

78

http://www.objs.com/x3h7/sql3.htm
http://sorbus.open.ac.uk/safari_ou/contents.htm
http://www.royalmail.com/docContent/other/Downloadable_Files/PAF_Digest_Issue_5_0.pdf

Prepared by: Omer Dawelbeit, T0986935

79

Prepared by: Omer Dawelbeit, T0986935

Appendices

80

Prepared by: Omer Dawelbeit, T0986935

APPENDIX

1-

2-

In the management of the day-to-day activities the delivery office administration staff
require a database to meet the following:
Coventry has four delivery offices each one of them is identified by its name and has a
telephone number, a manager and a postal address.

Each delivery office has a number of walks, a walk is a collection of addresses, which
are on the same road or are close to each other, each walk has a unique walk number, a
type (town, rural, or bulks), a delivery method (van or on foot), notes (dog warnings,
etc…) and a postal area that it covers. The delivery office also has a number of vans
and each van is characterised by a unique number beside the DVLA registration number,
a make, a model and the size. Besides the MOT due date is also required. The delivery
office is staffed by a number of employees responsible for sorting and delivering the
mail. Every employee is uniquely identified using a pay number. The employee name,
date of birth, date of entry to the business, grade, phone number, address, badge number,
skills, permanent duty and overtime availability need also be recorded. Each employee
covers a duty or a drop and can perform overtime to cover a duty. Full time & par-time
duties usually has a unique number, first post. Full time duties have second part which
can be performing second post or performing indoors mail sorting (ASAP), they also
have scheduled day off (in a 6 days week with a rotating day off) and the name of the
employee covering the day off. This rotation is governed by six weeks rotation table 1
below. A duty covers one walk, or other indoors activities. An Employee might have a
driving licence and owns a private car in which case the driving licence number need to
be recorded and the vehicle details too (Registration number, make, model, colour). A
driver employee does drops; every walk have at least one drop (drops bags). If a duty is
not covered by employees (vacant) or if the employee is absent (holiday or sick) it’s
covered by overtime. Employees may also feel sick and not attend to work, in which
case the pay number of the absent employee, the date commenced and the reason of
sickness need to be recorded. This record need only be kept while the employee is off
sick, past sick absences are stored separately. A conduct record is kept for each
employee, which might be counselling notes, a reprimand, or attendance procedure
warning, in either case some notes need to be kept. Customer can complaint about the
service being carried out by employees, each complaint has a unique reference number
and is from a specific address, notes of the complaints need to be kept too. Each
employee can book annual leave by selecting weeks from the current year. Each week is
identified uniquely by a week number and is limited by a quota.
Additional data requirement will include, but are not limited to:
 The ability to identify each day which duties are covered and which aren’t
 Keeping record of overtime and provide a list of the walks covered by overtime.

81

The Delivery Office
Statement of Data
Requirements

Prepared by: Omer Dawelbeit, T0986935

 A list of the office annual leave record.
 A list of all the sick employees, and the ones on holiday.
 A list of the conduct record and complaints again staff members.

82

The Delivery Office
Conceptual Data Model

Prepared by: Omer Dawelbeit, T0986935

APPENDIX

B.1 Entity types

Employee (PayNo, Name, DateOfBirth, DateOfEntry, Grade, Phone, BadgeNo, Skills,
OvertimeAvailability, Status)

DeliveryOffice (Name, TelNo, ManagerName)

Vehicle (RegNumber, Model)

PrivateVehicle (Colour)

CompanyVehicle (VehicleNo, MotDueDate, Size)

Conduct (Reference, Type, Notes, Date)

Week (WeekNo, Quota)

SickAbsence (PayNo, DateCommenced, Reason)

Walk (WalkNumber,Office, Type, DelMethod, Remarks, Status)

MailDrop (WalkNo, Office, DropPoint, Details)

Duty (DutyNo)

WalkDuty()

FullTimeDuty ()

PartTimeDuty (Hours)

NonWalkDuty(DutyDetails)

DutySecondPart (DutyNo, WeekNo, DayOff, SecondPart)

DutyCover (DutyNo, PayNo, Cause)

Overtime (DutyNo, EmployeeNo, Duration)

Complaint (ReferenceNo, Details, Date)

LicensedEmployee (LicenceNo, VehicleSize)

Address (PostCode, BuildingNumber, StreetName, Town, PostalArea)

83

Prepared by: Omer Dawelbeit, T0986935

B.2 Constraints

The total annual leave for a certain week must not exceed the quota for that week.

Only employees with a driver grade or postal higher grade can participate in the
PermanatlyCovers relationship with NonWalkDuty.

Only full time employee can participate in PermanentlyCoveredBy with FullTimeDuty
and only part time employees can participate in PermanentlyCoveredBy with
PartTimeDuty.

An Employee participating in CoversDayOff must not be participating in
PermanentlyCoveredBy

A duty can be covered by overtime or duty cover only if it does not participate into
PermanatlyCovers and HasCover or the employee doing that duty is participating in
the Has or MayBe relationships.

An employee can participate in PermanentlyCoveredBy with only FullTimeDuty or
PartTimeDuty or NonWalkDuty.

Employee and duties participating in PermanentlyCoveredBy should belong to the
same delivery office

An employee participating in Performs or ScheduledFor should not be absent form
work.

An employee can only participate in the Performs relationship if the attribute
OvertimeAvailability is ‘Yes’.

B.3 Assumptions

Only current sick absences are recorded, no history is kept.

A company vehicle might not be a spare vehicle and not used for a specific Delivery
Office.

A duty might be vacant, i.e. with no employee covering it.

An employee can be a spare, i.e. not covering any duty.

The overtime is updated daily, i.e. no history is kept.

The duty cover are updated weekly, no history is kept.

All full time duties are 40 hours.

84

Prepared by: Omer Dawelbeit, T0986935

B.4 E-R Diagram

85

Prepared by: Omer Dawelbeit, T0986935

APPENDIX

model DeliveryOffice

domains
AbsentDutyCauses = (AL, SL, VAC)
BadgeNumbers = string(4)
BuildingNumers = string
ComplaintReferenceNumbers = String
ConductReferenceNumbers = string
ConductType = (Councelling, Reprimand, SeriousReprimand)
Dates = Calenderdates
Days = Weekdays
DaysOff = Weekdays
DeliveryOfficeNames = (South, North, East, West)
DelMethod = (Van, Cycle, Onfoot)
DropPoints = string
DutyDetails = string
DutyHours = hours
DutyNumbers = string(4)
DutyWeeks = 1..6
EmployeeGrades = (OPG, OPGDriver, ex_PHG)
EmployeeNumbers = 10000 .. 99999
EmployeeSkills = string
EmployeeStatus = (FT, PT)
GeneralNotes = string
Holidays = 1..5
LicenceNumbers = string
OTAvailability = (yes, no)
PersonNames = string
PostalAreas = string
PostCodes = string(8)
SecondPartOptions = (SecondPost, ASAP)
StreetNames = string
TelephoneNumbers = string
TownNames = string
VehicleColour: string
VehicleModel: string
VehicleNumbers = string
VehicleRegsNumbers = string
VehicleSizes = (150, 50)

The Delivery Office
Relational Model

86

Prepared by: Omer Dawelbeit, T0986935

WalkNumbers = 1..100
WalkType = (Town, Rural, Bulk)
WeekNumbers = 1 .. 53
WeekQutas = 0 .. 100

relation Employee
PayNo: EmployeePayNumbers
Name: PersonNames
DatesOfBirth: Dates
DateOfEntry: Dates
Grade: EmployeeGrades
Phone: TelephoneNumbers
BadgeNo: BadgeNumbers
Skills: EmployeeSkills
OvertimeAvailability: OTAvailability
Office: DeliveryOfficeNames
PostCode: PostCodes
HouseNo: BuildingNumbers
Status: EmployeeStatus
primary key PayNo
{IsStaffedBy}
foreign key Office references DeliveryOffice not allowed null
alternate key BadgeNo not allowed null
{IsOccupiedBy}
foreign key (PostCode, HouseNo) references Address not allowed null
{no constraints regarding the relationship with relation Duty to reflect spare
employees}

relation DeliveryOffice

Name: DeliveryOfficeNames
TelNo: TelephoneNumbers
ManagerName: PersonNames
BuildingNumber: BuildingNumbers
PostCode: PostCodes
primary key Name
{Houses}
{ represents mandatory participation with respect to HasAsset }
foreign key (BuildingNumber, PostCode) references Address not allowed null
constraint (project DeliveryOffice over Name) difference (project
CompanyVehicle over Office) is empty
{ represents mandatory participation with respect to ConsistsOf }
constraint (project DeliveryOffice over Name) difference (project Walk over
Office) is empty
{ represents mandatory participation with respect to IsStaffedBy }
constraint (project DeliveryOffice over Name) difference (project Employee
over Office) is empty

87

Prepared by: Omer Dawelbeit, T0986935

relation Walk

WalkNumber: WalkNumbers
Office: DeliveryOfficeNames

Type: WalkType

DeliveryMethod: DelMethod
Remarks: GeneralNotes

Status : EmployeeStatus

DutyNo: DutyNumbers

primary key (WalkNumber, Office)
{ConsistsOf}
foreign key Office references DeliveryOffice
{ part of primary key i.e. not allowed null, represent mandatory participation with
respect to ConsistsOf }
alternate key DutyNo not allowed null
{ represents mandatory participation with respect to IsAcollectionOf from Walk
side}
constraint (project Walk over WalkNumber, Office) difference (project Address
over WalkNumbers, Office) is empty
{ represent mandatory participation with respect to DropedBy from Walk side }
constraint (project Walk over WalkNumber, Office) difference (project
MailDrop over WalkNumbers, Office) is empty
{represents the mandatory participation condition with regards to the 1 : 1 relationship Covers, and also here the referential integrity is
maintained using a constraint}

{Covers}

constraint (project Walk over DutyNo) difference ((project FullTimeDuty over
Duty) union (project PartTimeDuty over WalkNo)) is empty

relation MailDrop

WalkNo: WalkNumbers
Office: DeliveryOfficeNames

DropPoint: DropPoints

Details: GeneralNotes
DutoNo: DutyNumbers
primary key (WalkNo, Office, DropPoint)
{DropedBy}
foreign key (WalkNo, Office) references Walk not allowed null
{Does}
foreign key DutyNo references NonWalkDuty not allowed null

88

Prepared by: Omer Dawelbeit, T0986935

relation PrivateVehicle

RegNumber: VehicleRegNumbers

Model: VehicleModel

Color: VehicleColour
LicenceNo: LicenceNumbers
primary key RegNumber
{Owns}
foreign key LicenceNo references LicencedEmployee not allowed null

relation CompanyVehicle

RegNumber: VehicleRegNumbers
VehicleNumber: VehicleNumbers
MotDueDate: Dates
Size: VehicleSizes

Model: VehicleModel

Office: DeliveryOfficeNames
primary key RegNumber
alternate key VehicleNumber not allowed null
{HasAsset}
foreign key Office references DeliveryOffice allowed null

relation Conduct

Reference: ConductReferenceNumbers
Type: ConductType
Notes: GeneralNotes
StaffNumber: EmployeeNumbers
Date: Dates
primary key Reference
{HasCommited}
foreign key StaffNumber references Employee not allowed null

{relationship Booked}

relation Booked

WeekNo: WeekNumbers
PayNo: EmployeeNumbers
primary key (WeekNo, PayNo)
{Forms}
foreign key WeekNo references Week
{Has}

89

Prepared by: Omer Dawelbeit, T0986935

foreign key PayNo references Employee
{being part of the primary key reflects the mandatory participation condition with
regards to Has & Forms}

relation Week

WeekNo: WeekNumbers
Quota: WeekQuotas
primary key WeekNo

relation SickAbsence
PayNo: EmployeeNumbers
DateCommenced: Dates
Reason: GeneralNotes
primary key (PayNo)
{MayBe}
{ being part of the primary key reflects the mandatory participation condition with
regards to MayBe }
foreign key PayNo references Employee
{DateCommenced not allowed to be null}
constraint select SickAbsence where (DateCommenced is null) is empty

relation FullTimeDuty
DutyNo: DutyNumbers

DutyHolder: EmployeeNumbers

DayOffCover: EmployeePayNumbers
primary key DutyNo
alternate key DutyHolder not null
{PermanatlyCovers}
foreign key DutyHolder references Employee
{CoversDayOff}
foreign key DayOffCover references Employee

relation PartTimeDuty
DutyNo: DutyNumbers

DutyHolder: EmployeeNumbers

Hours: DutyHours
primary key DutyNo
alternate key DutyHolder not null
{PermanatlyCovers}
foreign key DutyHolder references Employee

90

Prepared by: Omer Dawelbeit, T0986935

relation NonWalkDuty
DutyNo: DutyNumbers

DutyHolder: EmployeeNumbers

Details: DutyDetails
primary key DutyNo
alternate key DutyHolder not null
{PermanatlyCovers}
foreign key DutyHolder references Employee

relation DutySecondPart
DutyNo: DutyNumbers
WeekNo: DutyWeeks
DayOff: Days
SecondPart: SecondPartOptions
primary key (DutyNo, WeekNo)
{HasPart}
foreign key DutyNo references FullTimeDuty not allowed null

relation DutyCover
DutyNo: DutyNumbers
Cover: EmployeeNumbers
Cause: AbsentDutyCauses
primary key DutyNo
{The following alternate key declarations represent the 1:1 relationship between Duty, Employee and DutyCover, not null represents the
mandatory participation conditions in regards to ScheduledFor and HasCover}

alternate key Cover not allowed null
{ScheduledFor}
foreign key Cover references Employee

{because of the entity subtypes, referential integrity between DutyCover and Duty can only be
maintained by a general constraint}

{HasCover}
constraint (project DutyCover over DutyNo) difference ((project FullTimeDuty
over DutyNo) union (project PartTimeDuty over DutyNo)) is empty

relation Overtime
DutyNo: DutyNumbers
EmployeeNo: EmployeeNumbers
Duration: DutyHours
primary key (WalkNo, EmployeeNo)
{Performs}
foreign key EmployeeNo references Employee

{because of the entity subtypes, referential integrity between Overtime and Duty can only be
maintained by a general constraint}

{TemporarlyCoveredBy}

91

Prepared by: Omer Dawelbeit, T0986935

constraint (project Overtime over DutyNo) difference ((project FullTimeDuty
over DutyNo) union (project PartTimeDuty over DutyNo) union (project
NonWalkDutyDuty over DutyNo)) is empty

relation Complaint
Reference: ComplaintsReferenceNumbers
Details: GeneralNotes
PostCode: PostCodes
BuildingNumber: BuildingNumbers
PayNo: EmployeeNumbers
Date: Dates
primary key ReferenceNo
{Reported}
foreign key (PostCode,BuildingNumber)references Address not allowed null
{Recieved}
foreign key PayNo references Employee not allowed null

relation LicensedEmployee
LicenseNo: LicenseNumbers
VehicleSize: VehicleSizes
EmployeeNo: EmployeeNumbers

RegNumber: VehicleRegNumbers
primary key LicenseNo
alternate key EmployeeNo not allowed null
{IsA}
foreign key EmployeeNo references Employee not allowed null

{IsDrivenBy}
foreign key RegNumber references CompanyVehicle allowed null

relation Address
PostCode: PostCodes
BuildingNumber: BuildingNumbers
StreetName: StreetNames
PostalArea: PostalAreas
Town: TownNames
WalkNo: WalkNumbers
Office: DeliveryOfficeNames
primary key (PostCode, BuildingNumber)
{IsAcollectionOf}
foreign key (WalkNo, Office) references Walk not allowed null

92

The Delivery Office SQL
Listings

Prepared by: Omer Dawelbeit, T0986935

 APPENDIX

D.1 SQL Data Definitions Statements

D.1.1 Domains definitions
CREATE DOMAIN delivery_office_names AS VARCHAR(10)

CHECK (@col IN ('south', 'north', 'east', 'west'))!

CREATE DOMAIN post_codes AS VARCHAR(8)
 NOT NULL!

CREATE DOMAIN building_numbers AS VARCHAR(4)
 NOT NULL!

CREATE DOMAIN employee_numbers AS CHAR(5)!

CREATE DOMAIN work_status AS CHAR(2)
NOT NULL
CHECK(@col IN ('pt', 'ft'))!

CREATE DOMAIN phone_numbers AS CHAR(11)!

CREATE DOMAIN person_names AS VARCHAR(20) NOT NULL!

CREATE DOMAIN walk_numbers AS SMALLINT
 CHECK (@col BETWEEN 1 AND 100)!

CREATE DOMAIN walk_types AS VARCHAR(5)
NOT NULL
CHECK (@col IN ('Town','Rural','Bulk'))!

CREATE DOMAIN delivery_methods AS VARCHAR(5)
NOT NULL
CHECK (@col IN ('Van','Cycle','Walk'))!

CREATE DOMAIN vehicle_reg_numbers AS VARCHAR(8)!

CREATE DOMAIN duty_numbers AS CHAR(4)
CHECK (LEFT (@col,1) IN ('s','n','w','e'))!

CREATE DOMAIN license_numbers AS CHAR(16)

CREATE DOMAIN vehicle_numbers AS VARCHAR(4)!

CREATE DOMAIN vehicle_sizes AS SMALLINT
 CHECK (@col IN (50, 150, 250))!

93

Prepared by: Omer Dawelbeit, T0986935

CREATE DOMAIN days AS CHAR(3)
 CHECK (@col IN ('MON','TUE','WED','THU', 'FRI','SAT'))!

D.1.2 Table definitions
CREATE TABLE postal_address

(post_code post_codes,
 building_no building_numbers,
 street_name VARCHAR(20) NOT NULL,
 postal_area VARCHAR(20),
 town VARCHAR(14) NOT NULL,
 walk_no walk_numbers NOT NULL,
 office delivery_office_names NOT NULL,
 PRIMARY KEY (post_code, building_no))!

CREATE TABLE delivery_office
(office_name delivery_office_names,
 telephone_no phone_numbers,
 manager_name person_names,
 building_no building_numbers,
 post_code post_codes,

 PRIMARY KEY (office_name),
 // Houses
 FOREIGN KEY (post_code, building_no) REFERENCES postal_address)!

CREATE TABLE employee
 (pay_no employee_numbers,

employee_name person_names,
date_of_birth DATE NOT NULL,
date_of_entry DATE NOT NULL,
grade VARCHAR(10) CHECK (grade IN ('opg','opgdriver','ex_phg')) NOT NULL DEFAULT
'opg',
phone phone_numbers,
badge_no VARCHAR(4),
skills LONG VARCHAR,
overtime_availability VARCHAR(3) CHECK (overtime_availability IN ('yes', 'no')),
office delivery_office_names NOT NULL,
house_no building_numbers,
post_code post_codes,
status work_status,
PRIMARY KEY (pay_no),
UNIQUE (badge_no),
// IsStaffedBy
FOREIGN KEY (office) REFERENCES delivery_office,
// defined as not null in the domain definition which reflects

 // madatory participation condition with regards to postal_address & delivery_office
// IsOccupiedBy

 FOREIGN KEY (post_code, house_no) REFERENCES postal_address)!

94

Prepared by: Omer Dawelbeit, T0986935

CREATE TABLE walk
(walk_number walk_numbers,
 office_name delivery_office_names,
 walk_type walk_types,
 delivery_method delivery_methods,
 remarks LONG VARCHAR,
 status work_status,
 duty_no duty_numbers,
 // ConsistsOf
 PRIMARY KEY (walk_number, office_name),
 /* duty number as alternate key guarantee 1: from walk side and the mandatory prticipation

 condition with regards to Covers */
 UNIQUE (duty_no),
 FOREIGN KEY (office_name) REFERENCES delivery_office,

 // represent mandatory participation with respect to IsAcollectionOf from Walk side
 CHECK

(EXISTS (SELECT * FROM postal_address
WHERE (postal_address.walk_no = walk.walk_number)

AND (postal_address.office = walk.office_name))))!

// IsAcollectionOf
ALTER TABLE postal_address

ADD FOREIGN KEY (walk_no, office) REFERENCES walk!

CREATE TABLE company_vehicle
(reg_no vehicle_reg_numbers,
 vehicle_no vehicle_numbers,
 mot_due_date DATE,
 vehicle_size vehicle_sizes DEFAULT NULL,
 model VARCHAR(15),
 office_name delivery_office_names DEFAULT NULL,
 PRIMARY KEY (reg_no),
 UNIQUE (vehicle_no),
 //HasAsset
 FOREIGN KEY (office_name) REFERENCES delivery_office)!

CREATE TABLE licensed_employee
(license_no license_numbers,
 vehicle_size vehicle_sizes DEFAULT NULL,
 pay_no employee_numbers NOT NULL,
 vehicle_no vehicle_reg_numbers DEFAULT NULL,
 PRIMARY KEY (license_no),
 UNIQUE (pay_no),
 // IsA
 FOREIGN KEY (pay_no) REFERENCES employee,
 //IsDrivenBy
 FOREIGN KEY (vehicle_no) REFERENCES company_vehicle)!

CREATE TABLE private_vehicle
(reg_no vehicle_reg_numbers,
 model VARCHAR(15),
 color VARCHAR(10),
 license_no license_numbers,
 PRIMARY KEY (reg_no),

 // Owns
 FOREIGN KEY (license_no) REFERENCES licensed_employee)!

95

Prepared by: Omer Dawelbeit, T0986935

CREATE TABLE complaint
(reference_no CHAR(7),
 post_code post_codes,
 building_no building_numbers,
 pay_no employee_numbers NOT NULL,
 details LONG VARCHAR,
 complaint_date DATE,
 PRIMARY KEY (reference_no),
 // Reported
 FOREIGN KEY (post_code, building_no) REFERENCES postal_address,
 // Recieved
 FOREIGN KEY (pay_no) REFERENCES employee)!

CREATE TABLE conduct
(reference_no CHAR(5),
 conduct_type VARCHAR(16)

CHECK (conduct_type IN ('Councelling','Reprimand','SeriousReprimand')) NOT
NULL,

 notes LONG VARCHAR,
 staff_no employee_numbers NOT NULL,
 conduct_date DATE,
 PRIMARY KEY (reference_no),
 // HasCommited
 FOREIGN KEY (staff_no) REFERENCES employee)!

CREATE TABLE week
(week_no SMALLINT

CHECK (week_no BETWEEN 1 AND 53),
 quota SMALLINT NOT NULL DEFAULT 0,
 PRIMARY KEY (week_no))!

CREATE TABLE booked
(week_no SMALLINT

CHECK (week_no BETWEEN 1 AND 53),
 pay_no employee_numbers,
 PRIMARY KEY (week_no, pay_no),
 // Forms
 FOREIGN KEY (week_no) REFERENCES week,
 // Has
 FOREIGN KEY (pay_no) REFERENCES employee)!

CREATE TABLE sick_absence
(pay_no employee_numbers,
 date_commenced DATE NOT NULL,
 reason LONG VARCHAR,
 PRIMARY KEY (pay_no),
 // MayBe
 FOREIGN KEY pay_no REFERENCES employee)!

/*--*/
/* Duty relations implementation */
/*--*/
CREATE TABLE non_walk_duty

(duty_no duty_numbers,
 pay_no employee_numbers DEFAULT NULL,
 duty_details VARCHAR(70),
 PRIMARY KEY (duty_no),
 // PermanatlyaCovers
 FOREIGN KEY (pay_no) REFERENCES employee)!

96

Prepared by: Omer Dawelbeit, T0986935

CREATE TABLE full_time_duty
(duty_no duty_numbers,
 duty_holder employee_numbers DEFAULT NULL,
 day_off_cover employee_numbers DEFAULT NULL,
 PRIMARY KEY (duty_no),
 // PermanatlyCovers
 FOREIGN KEY (duty_holder) REFERENCES employee,
 // CoversDayOff
 FOREIGN KEY (day_off_cover) REFERENCES employee)!

CREATE TABLE part_time_duty
(duty_no duty_numbers,
 duty_holder employee_numbers DEFAULT NULL,
 duty_hours SMALLINT,
 PRIMARY KEY (duty_no),
 // PermanatlyCovers
 FOREIGN KEY (duty_holder) REFERENCES employee)!

//// Duty Cover table to be accessed through a procedure only
CREATE TABLE duty_cover

(duty_no duty_numbers,
 cover employee_numbers,
 reason VARCHAR(3) CHECK (reason IN ('SL','AL','VAC')),
 PRIMARY KEY (duty_no),
 UNIQUE (cover),
 // ScheduledFor
 FOREIGN KEY (cover) REFERENCES employee)!

CREATE TABLE over_time
(duty_no duty_numbers,
 pay_no employee_numbers,
 duration SMALLINT,
 PRIMARY KEY (duty_no, pay_no),
 // Performs
 FOREIGN KEY (pay_no) REFERENCES employee)!

CREATE TABLE duty_second_part
(duty_no duty_numbers,
 rotation_week SMALLINT CHECK (rotation_week BETWEEN 1 AND 6),
 day_off days,
 second_part VARCHAR(11) CHECK (second_part IN ('Second post','ASAP')),
 PRIMARY KEY (duty_no, rotation_week),
 // HasPart
 FOREIGN KEY (duty_no) REFERENCES full_time_duty)!

CREATE TABLE walk_drop
(walk_no walk_numbers,
 office delivery_office_names,
 drop_point VARCHAR(70),
 license_no license_numbers,
 drop_details VARCHAR(70),
 PRIMARY KEY (walk_no, office, license_no),
 // Does
 FOREIGN KEY (license_no) REFERENCES licensed_employee,
 // For
 FOREIGN KEY (walk_no, office) REFERENCES walk)!

97

Prepared by: Omer Dawelbeit, T0986935

/* Implementation tables */
CREATE TABLE current_week

(week_no SMALLINT
CHECK (week_no BETWEEN 1 AND 53),

 PRIMARY KEY (week_no))!

CREATE TABLE duty_cover_info
(duty_no duty_numbers,
 reason VARCHAR(3) CHECK (reason IN ('SL','AL','VAC')),
 cover_type VARCHAR(10),

 PRIMARY KEY (duty_no))!

D.1.3 Table modification statement

// represent mandatory participation with respect to IsStaffedBy
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office FROM employee))!

// represent mandatory participation with respect to ConsistsOf
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office_name FROM walk))!

// represent mandatory participation with respect to HasAsset
ALTER TABLE delivery_office

ADD CHECK (office_name IN (SELECT office_name FROM company_vehicle))!

// maintains referential integrity with regards to HasCover
ALTER TABLE duty_cover

ADD CHECK (
 (duty_no IN (SELECT duty_no FROM part_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM non_walk_duty)))!

// maintains referential integrity with regards to TemporarilyCoveredBy
ALTER TABLE over_time

ADD CHECK (
 (duty_no IN (SELECT duty_no FROM part_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (duty_no IN (SELECT duty_no FROM non_walk_duty)))!

// ensures that a licenced employee can only drive the vehicle with vehicle_size from
// licenced_employee
ALTER TABLE licensed_employee

ADD CHECK
(vehicle_size = (SELECT vehicle_size FROM company_vehicle WHERE reg_no =

licensed_employee.vehicle_no))!

98

Prepared by: Omer Dawelbeit, T0986935

D.1.4 Views definitions
CREATE VIEW employee_car

 (employee_name, license_no, reg_no, model) AS
 SELECT employee.employee_name, licensed_employee.license_no,

private_vehicle.reg_no, private_vehicle.model
 FROM employee, licensed_employee, private_vehicle
 WHERE (employee.pay_no = licensed_employee.pay_no) AND

(licensed_employee.license_no = private_vehicle.license_no)!

CREATE VIEW sick_employees
("name", office, pay_number, grade, phone, "address") AS
 SELECT employee_name, office, pay_no, grade, phone, full_address(house_no, post_code)
 FROM employee
 WHERE pay_no IN (SELECT sick_absence.pay_no FROM sick_absence WHERE

sick_absence.pay_no = employee.pay_no)!

CREATE VIEW all_duties
(duty_no, duty_holder, status) AS
 SELECT duty_no, duty_holder, 'FT' FROM full_time_duty
 UNION
 SELECT duty_no, duty_holder , 'PT' FROM part_time_duty
 UNION
 SELECT duty_no, pay_no, 'ID' FROM non_walk_duty!

CREATE VIEW employee_duty_walk
("name", office, pay_number, grade, duty_number, walk_type, delivery_method, status) AS
 SELECT employee_name, office, pay_no, grade, all_duties.duty_no, walk_type,

delivery_method, walk.status
 FROM employee, all_duties, walk
 WHERE (employee.pay_no = all_duties.duty_holder) AND (walk.duty_no =

all_duties.duty_no)
 UNION
 SELECT employee_name, office, employee.pay_no, grade, all_duties.duty_no, '', '',
 all_duties.status
 FROM employee, all_duties
 WHERE (employee.pay_no = all_duties.duty_holder) AND (all_duties.status = 'ID')
 UNION
 SELECT '', duty_to_office (all_duties.duty_no), '', '', all_duties.duty_no, walk_type,
 delivery_method, all_duties.status
 FROM all_duties LEFT OUTER JOIN walk ON all_duties.duty_no = walk.duty_no
 WHERE (all_duties.duty_holder IS NULL)!

CREATE VIEW vacant_absent_duties
(duty_number, reason , status) AS
 SELECT duty_no, 'VAC', 'FT' FROM full_time_duty WHERE duty_holder IS NULL
 UNION
 SELECT duty_no, 'VAC', 'PT' FROM part_time_duty WHERE duty_holder IS NULL
 UNION
 SELECT duty_no, 'VAC', 'ID' FROM non_walk_duty WHERE pay_no IS NULL
 UNION
 SELECT duty_number, 'SL', status FROM employee_duty_walk WHERE pay_number IN

(SELECT pay_number FROM sick_employees)
 UNION

 SELECT duty_number, 'AL', status FROM employee_duty_walk WHERE pay_number IN
 (SELECT pay_no FROM bookedholiday WHERE week_no = (SELECT week_no FROM
 current_week))!

99

Prepared by: Omer Dawelbeit, T0986935

CREATE VIEW absent_duties_after_cover
(duty_number, reason , status) AS

 SELECT duty_number, reason, status FROM vacant_absent_duties
 WHERE duty_number NOT IN (SELECT duty_no FROM duty_cover)!

CREATE VIEW spare_employees
("name", pay_number, grade, office, status) AS
 SELECT employee_name, pay_no, grade, office, status FROM employee WHERE pay_no
 NOT IN (SELECT pay_number FROM employee_duty_walk)!

CREATE VIEW display_duty_walk_info
("Name", "Office", "Pay_number", "Grade", "Duty_number", "Walk_type", "Delivery_method",
 "Status", "Reason", "Cover_type") AS
 SELECT "name", office, pay_number, grade, duty_number, walk_type, delivery_method,
 status, reason, cover_type
 FROM employee_duty_walk LEFT OUTER JOIN duty_cover_info ON
 employee_duty_walk.duty_number = duty_cover_info.duty_no!

CREATE VIEW where_employees_live
(name, office, pay_number, grade, phone, address) AS
 SELECT employee_name, office, pay_no, grade, phone, full_address(house_no, post_code)
 FROM employee!

CREATE VIEW absent_employees
 (pay_no) AS

SELECT pay_no FROM sick_absence
 UNION

SELECT pay_no FROM bookedholiday WHERE week_no = (SELECT week_no FROM
current_week)!

CREATE VIEW available_spare_employees
("name", pay_number, grade, office, status) AS
SELECT * FROM spare_employees WHERE pay_number NOT IN
(SELECT pay_no FROM absent_employees)!

100

Prepared by: Omer Dawelbeit, T0986935

D.1.5 Triggers definitions

CREATE TRIGGER add_modify_fulltime_duty
BEFORE INSERT, UPDATE ON full_time_duty
REFERENCING NEW AS new_full_time_duty
FOR EACH ROW
BEGIN

DECLARE invalid_duty_details EXCEPTION FOR SQLSTATE '99999';
IF (
 //// ensures that duty_holder is unique
 (new_full_time_duty.duty_holder IN (SELECT duty_holder FROM full_time_duty))

 //// ensures that duty_holder does not exist in part_time_duty or non_walk_duty
 OR
 (new_full_time_duty.duty_holder IN (SELECT duty_holder FROM part_time_duty))
 OR
 (new_full_time_duty.duty_holder IN (SELECT pay_no FROM non_walk_duty))

 //// ensures that duty_no is a primary key across the subtypes of duty
 OR
 (new_full_time_duty.duty_no IN (SELECT duty_no FROM part_time_duty))
 OR
 (new_full_time_duty.duty_no IN (SELECT duty_no FROM non_walk_duty))

//// ensure only full time employees can participate in PermanentlyCovers with
full_time_duty

 OR
 ((SELECT status FROM employee WHERE employee.pay_no =

new_full_time_duty.duty_holder) <> 'FT')

//// ensure only employees and duties from the same office can participate in
PermanentlyCovers

 OR
 ((SELECT LEFT (employee.office,1) FROM employee WHERE employee.pay_no

= new_full_time_duty.duty_holder)
 <> (SELECT LEFT (new_full_time_duty.duty_no,1)))

//// ensure that employee covering a day off does not participate in
PermanentlyCovers

 OR
 (new_full_time_duty.day_off_cover IN (SELECT duty_holder FROM

full_time_duty))
 OR
 (new_full_time_duty.day_off_cover IN (SELECT duty_holder FROM

part_time_duty))
 OR
 (new_full_time_duty.day_off_cover IN (SELECT pay_no FROM non_walk_duty)))
THEN

SIGNAL invalid_duty_details;
END IF;

END!

101

Prepared by: Omer Dawelbeit, T0986935

CREATE TRIGGER add_modify_parttime_duty
BEFORE INSERT, UPDATE ON part_time_duty
REFERENCING NEW AS new_part_time_duty
FOR EACH ROW
BEGIN

DECLARE invalid_duty_details EXCEPTION FOR SQLSTATE '99999';
IF (
 //// ensures that duty_holder is unique
 (new_part_time_duty.duty_holder IN (SELECT duty_holder FROM

part_time_duty))

 //// ensures that duty_holder does not exist in full_time_duty or non_walk_duty
 OR
 (new_part_time_duty.duty_holder IN (SELECT duty_holder FROM full_time_duty))
 OR
 (new_part_time_duty.duty_holder IN (SELECT pay_no FROM non_walk_duty))

 //// ensures that duty_no is a primary key across the subtypes of duty
 OR
 (new_part_time_duty.duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (new_part_time_duty.duty_no IN (SELECT duty_no FROM non_walk_duty))

//// ensure only part time employees can participate in PermanentlyCovers with
part_time_duty

 OR
 ((SELECT status FROM employee WHERE employee.pay_no =
 new_part_time_duty.duty_holder) <> 'PT')

//// ensure only employees and duties from the same office can participate in
PermanentlyCovers

 OR
 ((SELECT LEFT (employee.office,1) FROM employee WHERE employee.pay_no
 = new_part_time_duty.duty_holder)

 <> (SELECT LEFT (new_part_time_duty.duty_no,1))))
THEN

SIGNAL invalid_duty_details;
END IF;

END!

102

Prepared by: Omer Dawelbeit, T0986935

CREATE TRIGGER add_modify_non_walk_duty
BEFORE INSERT, UPDATE ON non_walk_duty
REFERENCING NEW AS new_non_walk_duty
FOR EACH ROW
BEGIN

DECLARE invalid_duty_details EXCEPTION FOR SQLSTATE '99999';
IF (

 //// ensures that duty_holder does not exist in full_time_duty or part_time_duty
 (new_non_walk_duty.pay_no IN (SELECT duty_holder FROM part_time_duty))
 OR
 (new_non_walk_duty.pay_no IN (SELECT duty_holder FROM full_time_duty))

 //// ensures that duty_holder is unique
 OR
 (new_non_walk_duty.pay_no IN (SELECT pay_no FROM non_walk_duty))

 //// ensures that duty_no is a primary key across the subtypes of duty
 OR
 (new_non_walk_duty.duty_no IN (SELECT duty_no FROM full_time_duty))
 OR
 (new_non_walk_duty.duty_no IN (SELECT duty_no FROM part_time_duty))

//// ensure only employees and duties from the same office can participate in
PermanentlyCovers

 OR
 ((SELECT LEFT (employee.office,1) FROM employee WHERE employee.pay_no
 = new_non_walk_duty.pay_no)

 <> (SELECT LEFT (new_non_walk_duty.duty_no,1))))

//// ensure only employees with grades 'ex_phg' and 'opgdriver' can participate in
PermanentlyCovers with non_walk_duty

 OR
 ((SELECT grade FROM employee WHERE employee.pay_no =
 new_part_time_duty.duty_holder) NOT IN ('ex_phg', 'opgdriver'))

THEN
SIGNAL invalid_duty_details;

END IF;
END!

// ensures that annual leave doesn't exceed the quota
CREATE TRIGGER add_annual_leave

BEFORE INSERT, UPDATE ON bookedholiday
REFERENCING NEW AS new_annual_leave
FOR EACH ROW
BEGIN

DECLARE leave_exceed_quota EXCEPTION FOR SQLSTATE '99999';
IF ((SELECT COUNT(pay_no) FROM bookedholiday WHERE

bookedholiday.week_no = new_annual_leave.week_no)
>= (SELECT quota FROM week WHERE week.week_no =
new_annual_leave.week_no)) THEN

SIGNAL leave_exceed_quota;
END IF;

END!

103

Prepared by: Omer Dawelbeit, T0986935

CREATE TRIGGER add_modify_duty_cover
BEFORE INSERT, UPDATE ON duty_cover
REFERENCING NEW AS new_duty_cover
FOR EACH ROW
BEGIN

DECLARE invalid_dutycover_details EXCEPTION FOR SQLSTATE '99999';

 //// Make sure duty cover is for a vacant or absent duty
 IF (NOT (new_duty_cover.duty_no IN (SELECT duty_number FROM

vacant_absent_duties)))
 THEN

SIGNAL invalid_overtime_details;
 END IF;

 //// Make sure the employee covering the duty is not absent from work
 IF ((new_duty_cover.cover IN (SELECT pay_number FROM sick_employees))
 OR

 (new_duty_cover.cover IN (SELECT pay_no FROM bookedholiday
 WHERE week_no = (SELECT week_no FROM current_week))))

 THEN
SIGNAL invalid_dutycover_details;

 END IF;
 END!

CREATE TRIGGER add_modify_over_time
BEFORE INSERT, UPDATE ON over_time
REFERENCING NEW AS new_over_time
FOR EACH ROW
BEGIN

DECLARE invalid_overtime_details EXCEPTION FOR SQLSTATE '99999';

 //// Make sure overtime is used to cover a vacant or absent duty
 IF (NOT (new_over_time.duty_no IN (SELECT duty_number FROM

 absent_duties_after_cover)))
 THEN

SIGNAL invalid_overtime_details;
 END IF;

//// Make sure the employee performing the overtime is not absent from work
IF ((new_over_time.pay_no IN (SELECT pay_number FROM sick_employees))

 OR
 (new_over_time.pay_no IN (SELECT pay_no FROM bookedholiday
 WHERE

week_no = (SELECT week_no FROM current_week))))
 THEN

SIGNAL invalid_overtime_details;
 END IF;

 END!

104

Prepared by: Omer Dawelbeit, T0986935

// ensure that employee entered as sick are not participating in ScheduledFor or Performs
CREATE TRIGGER add_modify_sick_absence

AFTER INSERT, UPDATE ON sick_absence
REFERENCING NEW AS new_sick_absence
FOR EACH ROW
BEGIN

IF (new_sick_absence.pay_no IN (SELECT pay_no FROM over_time))
THEN

DELETE FROM over_time WHERE new_sick_absence.pay_no =
over_time.pay_no;

END IF;

IF (new_sick_absence.pay_no IN (SELECT cover FROM duty_cover))
THEN

DELETE FROM duty_cover WHERE new_sick_absence.pay_no =
duty_cover.cover;

END IF;
 END!

// maintains the referential integrity with part_time_duty and full_time_duty
CREATE TRIGGER add_modify_walk

BEFORE INSERT, UPDATE ON walk
REFERENCING NEW AS new_walk
FOR EACH ROW
BEGIN

DECLARE invalid_walk_details EXCEPTION FOR SQLSTATE '99999';
IF (new_walk.status = 'PT')
THEN

IF (NOT (new_walk.duty_no IN (SELECT duty_no FROM part_time_duty)))
THEN

SIGNAL invalid_walk_details;
END IF;

END IF;

IF (new_walk.status = 'FT')
THEN

IF (NOT (new_walk.duty_no IN (SELECT duty_no FROM full_time_duty)))
THEN

SIGNAL invalid_walk_details;
END IF;

END IF;
END!

105

Prepared by: Omer Dawelbeit, T0986935

D.1.6 Functions definitions

CREATE FUNCTION duty_to_office (dutyno VARCHAR(4))
RETURNS VARCHAR(10)
BEGIN

DECLARE adelivery_office VARCHAR(10);
IF (LEFT(dutyno,1) = 'E')

THEN
SET adelivery_office = 'East';

END IF;
IF (LEFT(dutyno,1) = 'N')

THEN
SET adelivery_office = 'North';

END IF;
IF (LEFT(dutyno,1) = 'S')

THEN
SET adelivery_office = 'South';

END IF;
IF (LEFT(dutyno,1) = 'W')

THEN
SET adelivery_office = 'West';

END IF;

RETURN (adelivery_office);
END!

CREATE FUNCTION full_address (buildingno VARCHAR(4), postcode VARCHAR(8))
RETURNS VARCHAR(75)
BEGIN

DECLARE fulladdress VARCHAR(80);
DECLARE street VARCHAR(20);
DECLARE postalarea VARCHAR(20);

 DECLARE post_town VARCHAR(14);
SELECT street_name, postal_area, town
INTO street, postalarea, post_town
FROM postal_address
WHERE (post_code = postcode) AND (building_no = buildingno);
SET fulladdress = buildingno || ', ' || street || ', ' || postalarea || ', ' || post_town || ', ' ||

postcode;
RETURN (fulladdress);

END!

106

Prepared by: Omer Dawelbeit, T0986935

D.1.7 Procedures definitions

// A procedure to set the current week in the finantial year
CREATE PROCEDURE set_week(IN weekno SMALLINT)

BEGIN
 UPDATE current_week
 SET week_no = weekno;

END!

CREATE PROCEDURE process_duty_cover()
BEGIN

DECLARE v_duty_no CHAR(4);
DECLARE v_reason VARCHAR(3);
DECLARE v_cover_type VARCHAR(10);
DECLARE c_vacant_absent_duty CURSOR FOR

SELECT duty_number, reason FROM vacant_absent_duties;
 DECLARE err_notfound EXCEPTION FOR SQLSTATE '02000';

 DELETE FROM duty_cover_info;
 OPEN c_vacant_absent_duty;
 WHILE SQLSTATE <> err_notfound LOOP

FETCH c_vacant_absent_duty INTO v_duty_no, v_reason;
IF (SQLSTATE <> err_notfound) THEN

SET v_cover_type = '';

IF (v_duty_no IN (SELECT duty_no FROM duty_cover))
THEN SET v_cover_type = 'duty cover';

END IF;

IF (v_duty_no IN (SELECT duty_no FROM over_time))
THEN SET v_cover_type = 'Overtime';

END IF;

INSERT INTO duty_cover_info
VALUES (v_duty_no, v_reason, v_cover_type);

 END IF;
 END LOOP;
END!

CREATE PROCEDURE add_over_time(IN dutyno CHAR(4), payno CHAR(5), ot_duration
SMALLINT)
BEGIN

DECLARE err_input EXCEPTION FOR SQLSTATE '99999';
IF ((SELECT overtime_availability FROM employee WHERE pay_no = payno) = 'yes')
THEN

INSERT INTO over_time VALUES (dutyno, payno, ot_duration);
ELSE

SIGNAL err_input;
END IF

END!

107

Prepared by: Omer Dawelbeit, T0986935

D.2 SQL Data Manipulation Statements

D.2.1 SQL statements to populate the tables

INSERT INTO postal_address VALUES
('CV1 1AA','40','BISHOPS STREET','','COVENTRY',1, 'east');

INSERT INTO delivery_office VALUES
('West','02476557263','G Sandeep','40','CV1 1AA');

INSERT INTO delivery_office VALUES
('South','02476557264','D Snowdon','40','CV1 1AA');

108

The Delivery Office
Sample Tables

Prepared by: Omer Dawelbeit, T0986935

APPENDIX

Company Vehicle Table

reg_no vehicle_no mot_due_date vehicle_size model office_name
X467 GFD CV1 12/08/03 150 FORD
BN52ARS CV2 05/02/05 50 FORD East
T765 VBC CV3 07/11/02 250 FORD North
SF02YNG CV4 03/05/04 50 VAUXHALL West
Y543 RAD CV5 27/11/02 150 RENAULT South
Y786 MUY CV6 10/09/03 50 VAUXHALL North
KN02HJC CV7 10/04/05 50 FORD East
OU51DAL CV8 07/07/04 150 FORD West
TN02OIO CV9 10/05/04 50 FORD South

Private Vehicle Table

reg_no model color license_no
M505 RAU Ford Escort Blue MAGEE563232ER3OM
T485 NBV Vauxhall Vectra Green THOMA122334MT8BN
CK02MNA Peugeot 406 Silver STEVE908765OD4TY
DN51JKL Honda Civic Red JONES501389YA8NM
X981 SHR Nissan Micra Yellow FOXXY444908SP0TN
D123 TEW Ford Fiesta Grey MCCAN012799JK5XY
L459 ZCV Rover Tomcat Silver MOHAM982365SM8TY
P45 ERT Renault Clio Blue PHILI657890MK0OI
J543 NAZ BMW 320i SE Silver AHMED480546AM1TU

Delivery Office Table

office_name telephone_no manager_name building_no post_code
east 02476557261 Jon Campbell 40 CV1 1AA

North 02476557262 Steve Moore 40 CV1 1AA
West 02476557263 G Sandeep 40 CV1 1AA
South 02476557264 D Snowdon 40 CV1 1AA

109

Prepared by: Omer Dawelbeit, T0986935

Licensed Employee Table

license_no vehicle_size pay_no vehicle_no
JOHNA862088MA3ER 50 86961 SF02YNG
MAGEE563232ER3OM 50 99856 BN52ARS
MOHAM982365SM8TY 88974
FRANC981234EN1ZX 50 10088 Y786 MUY
THOMA122334MT8BN 50 23771 TN02OIO

PHILI657890MK0OI 78541
RUSHT563123MH7WE 87961
JONES501389YA8NM 12458
SINGH096354JS4CV 19700

WILCO455668JM1QW 54213
STEVE908765OD4TY 99471
FOXXY444908SP0TN 31692
MCCAN012799JK5XY 10023
GEORG111090NJ9LP 77890
AHMED480546AM1TU 77564
MICHA009871SR6BG 58470

Walk Table

walk_number office_name walk_type delivery_method remarks status
1 East Town Walk Beware of the traffic in the

dual carriage way when
crossing to High Street

FT

2 East Town Walk PT
3 East Town Walk FT
4 East Bulk Van PT
1 North Town Walk PT
2 North Town Walk PT
3 North Bulk Van FT
4 North Rural Cycle FT
1 West Town Walk PT
2 West Town Walk FT
3 West Town Walk FT
4 West Bulk Van FT
1 South Town Walk FT
2 South Town Walk PT
3 South Rural Cycle FT
4 South Bulk Van FT

Part Time Duty Table

duty_no duty_holder duty_hours
E004 87961 27
E002 78541 30
N001 24661 30
N002 88974 30
W001 54213 27
S002 55355 27
E007 30

110

Prepared by: Omer Dawelbeit, T0986935

Full Time Duty Table

duty_no duty_holder day_off_cover
E001 21652
E003 12458
N003 10023
N004 75632
W002 19700
W003 11543
W004 31692
S001 77890
S003 77564
S004
S007

Non Walk Duty Table

duty_no pay_no duty_details
E005 20034 Sort the special delivery items into walks and handles customer querie
W005 99471 Sort the special delivery items into walks and handles customer querie
N005 63263 Sort the special delivery items into walks and handles customer querie
S005 96742 Sort the special delivery items into walks and handles customer querie
E006 99856 drop bags and packets for E001,E002,E003 & E004
N006 10088 drop bags and packets for N001,N002,N003 & N004
S006 23771 drop bags and packets for S001,S002,S003 & S004
W006 86961 drop bags and packets for W001,W002,W003 & W004
N007 Deal with returned mail and surcharges

Postal Address Table

post_code building_no street_name postal_area town walk_no office
CV3 3KB 45 Abbey Road Stivichall COVENTRY 2 south
CV3 3KB 89 Abbey Road Stivichall COVENTRY 2 south
CV3 3ND 36 Abbey Way Stivichall COVENTRY 2 south
CV3 3ND 85 Abbey Way Stivichall COVENTRY 2 south
CV2 4ZX 12 Adare Drive Alderman's Green COVENTRY 4 east
CV2 4ZX 40 Adare Drive Alderman's Green COVENTRY 4 east
CV4 5TX 34 Aragon House Hawkes End COVENTRY 2 west
CV4 5TX 65 Aragon House Hawkes End COVENTRY 2 west
CV1 1AB 5 Armorial Road City Centre COVENTRY 1 east
CV1 1AB 7 Armorial Road City Centre COVENTRY 1 east
CV2 3NN 12a Asthill Croft Walsgrave on Sowe COVENTRY 3 east
CV2 3NN 13b Asthill Croft Walsgrave on Sowe COVENTRY 3 east
CV3 3VB 30 Bankside Close Stivichall COVENTRY 2 south
CV3 3VB 63 Bankside Close Stivichall COVENTRY 2 south
CV3 2ZX 322 Bartholomew Court Binley COVENTRY 1 south
CV3 2ZX 76 Bartholomew Court Binley COVENTRY 1 south
CV4 4KB 6 Benedictine Road Earlsdon COVENTRY 2 west
CV4 4KB 89 Benedictine Road Earlsdon COVENTRY 2 west
CV1 1AA 30 Bishops Street City Centre COVENTRY 1 east
CV1 1AA 40 Bishops Street City Centre COVENTRY 1 east
CV3 2JQ 24 Bowater Court Binley COVENTRY 1 south
CV3 2JQ 58 Bowater Court Binley COVENTRY 1 south
CV3 2HG 57 Burnham Road Binley COVENTRY 1 south

111

Prepared by: Omer Dawelbeit, T0986935

CV3 2HG 80 Burnham Road Binley COVENTRY 1 south
CV5 2RW 15 Calder Close Allesley COVENTRY 3 west
CV5 2RW 18 Calder Close Allesley COVENTRY 3 west
CV4 3DD 10 Carthusian Road Upper Eastern

Green
COVENTRY 1 west

CV4 3DD 4 Carthusian Road Upper Eastern
Green

COVENTRY 1 west

CV6 4TR 30 Cleeves Mews Radford COVENTRY 2 north
CV6 4TR 88 Cleeves Mews Radford COVENTRY 2 north
CV4 2QW 45 Cornelius Street Tile Hill COVENTRY 1 west
CV4 2QW 7b Cornelius Street Tile Hill COVENTRY 1 west
CV5 2OU 10 Courtleet Road Allesley COVENTRY 3 west
CV5 2OU 76 Courtleet Road Allesley COVENTRY 3 west
CV6 3PO 4 Daintree Croft Longford COVENTRY 2 north
CV6 3PO 7 Daintree Croft Longford COVENTRY 2 north
CV6 2GH 4 Daventry Road Little Heath COVENTRY 1 north
CV6 2GH 6 Daventry Road Little Heath COVENTRY 1 north
CV4 1DZ 7a Franciscan Road Kirby Corner COVENTRY 1 west
CV4 1DZ 90 Franciscan Road Kirby Corner COVENTRY 1 west
CV5 1PU 1 Frankpledge Road Westwood Heath COVENTRY 3 west
CV5 1PU 9 Frankpledge Road Westwood Heath COVENTRY 3 west
CV4 6MN 13 Galeys Road Pickford Green COVENTRY 2 west
CV4 6MN 24 Galeys Road Pickford Green COVENTRY 2 west
CV6 7DH 24 Glover Street Great Heath COVENTRY 4 north
CV6 7DH 56 Glover Street Great Heath COVENTRY 4 north
CV3 4GA 1 Hilllfray Drive Willenhall COVENTRY 3 south
CV3 4GA 76 Hilllfray Drive Willenhall COVENTRY 3 south
CV2 3ML 33 Hiron Croft Walsgrave on Sowe COVENTRY 3 east
CV2 3ML 50 Hiron Croft Walsgrave on Sowe COVENTRY 3 east
CV1 1DS 1 Horsford Road City Centre COVENTRY 1 east
CV1 1DS 3 Horsford Road City Centre COVENTRY 1 east
CV6 2NM 15 Howard Mews Keresley COVENTRY 1 north
CV6 2NM 19 Howard Mews Keresley COVENTRY 1 north
CV2 3AD 44 Humphrey Burton Road Walsgrave on Sowe COVENTRY 3 east
CV2 3AD 60 Humphrey Burton Road Walsgrave on Sowe COVENTRY 3 east
CV6 1BB 2a Kenilworth Court Court House Green COVENTRY 1 north
CV6 1BB 2b Kenilworth Court Court House Green COVENTRY 1 north
CV6 6VB 45 Lichfield Road Foleshill COVENTRY 4 north
CV6 6VB 78 Lichfield Road Foleshill COVENTRY 4 north
CV2 2TY 13 Michaelmas Road Upper Stoke COVENTRY 2 east
CV2 2TY 18 Michaelmas Road Upper Stoke COVENTRY 2 east
CV2 1RJ 109 Orchard Crescent Upper Stoke COVENTRY 2 east
CV2 1RJ 2 Orchard Crescent Upper Stoke COVENTRY 2 east
CV6 6GE 13 Quinton Road Foleshill COVENTRY 4 north
CV6 6GE 90 Quinton Road Foleshill COVENTRY 4 north
CV5 4DS 23 Riverside Close Chapel Fields COVENTRY 4 west
CV5 4DS 45 Riverside Close Chapel Fields COVENTRY 4 west
CV3 4KL 34 Rutherglen Avenue Willenhall COVENTRY 3 south
CV3 4KL 84 Rutherglen Avenue Willenhall COVENTRY 3 south
CV3 5ER 8 Seedfield Croft Binley COVENTRY 4 south
CV3 5ER 9 Seedfield Croft Binley COVENTRY 4 south
CV6 5FD 16 Shortley Road Little Heath COVENTRY 3 north
CV6 5FD 34 Shortley Road Little Heath COVENTRY 3 north
CV2 1KY 1 Stoney Road Upper Stoke COVENTRY 2 east
CV2 1KY 5 Stoney Road Upper Stoke COVENTRY 2 east
CV6 5RT 1 Swifts Corner Little Heath COVENTRY 3 north
CV6 5RT 2 Swifts Corner Little Heath COVENTRY 3 north
CV5 3SC 65 The Avenue Brownshill Green COVENTRY 4 west
CV5 3SC 69 The Avenue Brownshill Green COVENTRY 4 west
CV2 4BA 3 The Monks Croft Alderman's Green COVENTRY 4 east

112

Prepared by: Omer Dawelbeit, T0986935

CV2 4BA 6 The Monks Croft Alderman's Green COVENTRY 4 east
CV6 5AH 105 The Mount Keresley COVENTRY 3 north
CV6 5AH 89 The Mount Keresley COVENTRY 3 north
CV5 3VN 45 Tonbridge Road Brownshill Green COVENTRY 4 west
CV5 3VN 62 Tonbridge Road Brownshill Green COVENTRY 4 west
CV2 4JO 4 Townsend Road Alderman's Green COVENTRY 4 east
CV2 4JO 50 Townsend Road Alderman's Green COVENTRY 4 east
CV3 5FK 20 Troyes Close Binley COVENTRY 4 south
CV3 5FK 93 Troyes Close Binley COVENTRY 4 south
CV3 5YA 78 Wanley Road Binley COVENTRY 4 south
CV3 5YA 85 Wanley Road Binley COVENTRY 4 south
CV6 4FF 47 Whitley Court Radford COVENTRY 2 north
CV6 4FF 53 Whitley Court Radford COVENTRY 2 north
CV3 4SO 4 Woodstock Road Willenhall COVENTRY 3 south
CV3 4SO 7 Woodstock Road Willenhall COVENTRY 3 south

113

Prepared by: Omer Dawelbeit, T0986935

Employee Table

date_of_birth date_of_entry grade phone badge_no skills overtime_a
vailability

office house_no post_code status

03/03/76 10/01/02 Opg 02476239087 1030 working safely
course, first aid

yes East 57 CV3 2HG FT

16/03/79 10/01/02 OPGDriver 02476559884 3695 yes East 15 CV6 2NM FT
10/05/75 25/04/95 OPG 07786622431 6484 no East 1 CV5 1PU PT
24/02/70 08/08/92 ex_PHG 07596121121 2133 no East 23 CV5 4DS FT
06/09/74 06/07/98 OPG 07889256987 4452 no East 45 CV5 4DS PT
29/04/70 08/09/91 OPG 6547 yes East 34 CV3 4KL FT
18/08/69 15/07/80 OPG 1432 no West 84 CV3 4KL FT
07/01/80 04/04/01 OPG 02476551552 3435 yes West 8 CV3 5ER FT
06/08/75 04/09/02 OPGDriver 07986556211 2285 yes West 9 CV3 5ER FT
30/08/76 25/04/99 OPG 02476312521 7451 yes West 16 CV6 5FD PT
25/10/69 15/06/02 ex_PHG 07956454580 3312 First aid yes West 34 CV6 5FD FT
10/01/71 05/05/95 OPG 07798123456 0701 First aid yes West 1 CV2 1KY FT
12/07/70 01/03/88 OPG 02476778830 1230 First aid yes North 5 CV2 1KY FT
23/05/60 13/10/85 OPG 02476453788 0270 Manual handling

and lifting
yes North 1 CV6 5RT PT

04/09/78 01/01/01 OPG 07988614214 4978 First aid yes North 2 CV6 5RT PT
01/01/65 14/07/87 ex_PHG 02476854124 5421 yes North 65 CV5 3SC FT
15/08/72 07/09/00 OPGDriver 02476884736 8795 yes North 69 CV5 3SC FT
30/09/75 01/05/92 OPG 02476737684 2254 no North 3 CV2 4BA FT
22/10/65 24/11/98 OPGDriver 1601 sign language

for deaf
employees

yes South 6 CV2 4BA FT

02/02/80 08/05/00 OPG 02476885965 5532 no South 105 CV6 5AH FT
25/06/62 09/01/80 OPG 07885641365 8542 no South 89 CV6 5AH FT
22/07/71 20/06/99 OPG 02476885414 2001 no South 50 CV2 4JO FT
23/05/76 08/10/98 OPG 02476100123 5103 yes South 20 CV3 5FK PT
25/07/77 03/09/00 ex_PHG 02476947586 3356 yes South 93 CV3 5FK FT

115

Structure Of A PAF
Address [Royal Mail,
2000, ch. 3]

Prepared by: Omer Dawelbeit, T0986935

APPENDIX

F.1 PAF Details

PAF holds information about delivery points, a delivery point being a property,
an Organisation or a letterbox. The names of private individuals are not
normally held on PAF. They are present only when there is no other method
of identifying a delivery point.

The information held for a Small User delivery point is split into two parts,
these being Organisation and address. The vast majority of delivery points are
residential addresses, which do not contain any Organisation details. The
delivery points that contain Organisation details are called either Small or
Large User Organisations. Large User Organisations are given their own
Postcode, whereas a number of Small User Organisations and/or residential
addresses can share a single Postcode.

All address text on PAF is held in upper case, except labels, which are
available in mixed case format.

[..]

F.2 Organisation Details

The name of the Organisation is held. The Department can also be held.

Field name max. field length

Organisation Name 60

Department Name 60

116

Prepared by: Omer Dawelbeit, T0986935

F.3 Address Details

An address is composed of the following address elements. Not all are
present for every address, as addresses on PAF may be composed of
different subsets of the elements. Postcode and Post Town are the only
elements that are mandatory, i.e. they will be present for each address. The
County is no longer required as part of a correct postal address. For further
details refer to Flexible Addressing at the end of this section.

max. field
length

Premise Elements - Sub Building Name 30
 Building Name 50
 Building Number 4

Thoroughfare elements - Dependent Thoroughfare Name 60
 Dependent Thoroughfare Descriptor 20
 Thoroughfare Name 60
 Thoroughfare Descriptor 20

Locality elements - Double Dependent Locality 35
 Dependent Locality 35
 Post Town 30
 County 30
 Postcode 7

F.4 PO Box Details

max. field length
PO Box details may be present for Large Users only 6

117

